File size: 11,826 Bytes
35f8d42
ed808e5
 
 
 
 
784d9cc
 
 
 
 
ed808e5
35f8d42
3065ade
ed808e5
 
 
 
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
ed808e5
 
 
35f8d42
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784d9cc
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
ed808e5
d2175fe
 
 
 
e6ee09e
d2175fe
 
 
 
 
 
 
ed808e5
784d9cc
 
 
 
 
 
d2175fe
decfc66
d2175fe
 
 
 
 
ed808e5
d2175fe
 
784d9cc
d2175fe
 
 
 
 
35f8d42
784d9cc
d2175fe
 
 
ed808e5
784d9cc
ee51c96
784d9cc
d2175fe
 
784d9cc
3065ade
784d9cc
 
 
d2175fe
784d9cc
632c4c9
784d9cc
830754d
784d9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ee09e
784d9cc
 
 
 
 
 
 
 
 
 
 
 
 
d2175fe
 
784d9cc
2260c84
d2175fe
784d9cc
2260c84
 
 
 
d2175fe
 
 
784d9cc
d2175fe
784d9cc
 
 
 
 
 
 
 
d2175fe
784d9cc
 
 
 
 
d2175fe
784d9cc
 
3563063
784d9cc
 
 
 
 
 
 
 
 
 
 
 
3563063
784d9cc
 
 
 
 
 
 
 
d2175fe
784d9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2175fe
 
 
 
1fe6df1
 
 
d2175fe
1fe6df1
784d9cc
 
d2175fe
35f8d42
 
684f91c
d2175fe
 
 
 
 
 
 
784d9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2175fe
784d9cc
d2175fe
 
 
 
35f8d42
d2175fe
 
 
 
 
784d9cc
 
 
d262b85
3563063
d262b85
784d9cc
 
d2175fe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
import chromadb
from langchain_text_splitters import CharacterTextSplitter
from groq import Groq
import libsbml
import networkx as nx
from pyvis.network import Network

# Constants
GITHUB_OWNER = "TheBobBob"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()

def fetch_github_json():
    url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
    headers = {"Accept": "application/vnd.github+json"}
    response = requests.get(url, headers=headers)
    
    if response.status_code == 200:
        data = response.json()
        if "download_url" in data:
            file_url = data["download_url"]
            json_response = requests.get(file_url)
            return json_response.json()
        else:
            raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
    else:
        raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")

def search_models(search_str, cached_data):
    query_text = search_str.strip().lower()
    models = {}
    
    for model_id, model_data in cached_data.items():
        if 'name' in model_data:
            name = model_data['name'].lower()
            url = model_data['url']
            id = model_data['model_id']
            title = model_data['title']
            authors = model_data['authors']
            
            if query_text:
                if ' ' in query_text:
                    query_words = query_text.split(" ")
                    if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
                else:
                    if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
    
    return models

def download_model_file(model_url, model_id):
    model_url = f"https://raw.githubusercontent.com/sys-bio/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
    response = requests.get(model_url)
    
    if response.status_code == 200:
        os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
        file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
        
        with open(file_path, 'wb') as file:
            file.write(response.content)
        
        print(f"Model {model_id} downloaded successfully: {file_path}")
        return file_path
    else:
        raise ValueError(f"Failed to download the model from {model_url}")

def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
    try:
        r = te.loadSBMLModel(sbml_file_path)
        antimony_str = r.getCurrentAntimony()
        
        with open(antimony_file_path, 'w') as file:
            file.write(antimony_str)
        
        print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
    
    except Exception as e:
        print(f"Error converting SBML to Antimony: {e}")

def split_biomodels(antimony_file_path, GROQ_API_KEY, models):
    text_splitter = CharacterTextSplitter(
        separator="\n\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
        is_separator_regex=False,
    )
    
    directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
    if not os.path.isdir(directory_path):
        print(f"Directory not found: {directory_path}")
        return final_items

    files = os.listdir(directory_path)
    for file in files:
        final_items = []
        file_path = os.path.join(directory_path, file)
        try:
            with open(file_path, 'r') as f:
                file_content = f.read()
                items = text_splitter.create_documents([file_content])
                final_items.extend(items)
                db, client = create_vector_db(final_items, GROQ_API_KEY, models)
                break
        except Exception as e:
            print(f"Error reading file {file_path}: {e}")

    return db, client

def create_vector_db(final_items, GROQ_API_KEY, models):
    client = chromadb.Client()
    collection_name = "BioModelsRAG"

    db = client.get_or_create_collection(name=collection_name)

    client = Groq(
        api_key=GROQ_API_KEY,
    )
    for model_id, _ in models.items():
        
        results = db.get(where = {"document" : model_id})

        if not results['results']:
            counter = 0
            for item in final_items:
                counter += 1
                counter += " " + model_id

                prompt = f"""
                Summarize the following segment of Antimony in a clear and concise manner:
                1. Provide a detailed summary using a reasonable number of words. 
                2. Maintain all original values and include any mathematical expressions or values in full. 
                3. Ensure that all variable names and their values are clearly presented. 
                4. Write the summary in paragraph format, putting an emphasis on clarity and completeness. 
                
                Segment of Antimony: {item}
                """

                chat_completion = client.chat.completions.create(
                    messages=[
                        {
                            "role": "user",
                            "content": prompt,
                        }
                    ],
                    model="llama3-8b-8192",
                )

                if chat_completion.choices[0].message.content:
                    db.upsert(
                        ids = [counter], 
                        metadatas = [{"document" : model_id}], 
                        documents = [chat_completion.choices[0].message.content],
                    )
    
    return db, client

def generate_response(db, query_text, client, models):
    query_results_final = ""

    for model_id in models:
        query_results = db.query(
            query_texts=query_text,
            n_results=5,
            where={"document": models[model_id]},
        )
        best_recommendation = query_results['documents']
        query_results_final += best_recommendation + "\n\n"
    
    prompt_template = f"""
    
    Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
    Context:
    {query_results_final}
    Instructions:
    1. Cross-Reference: Use all provided context to define variables and identify any unknown entities. 
    2. Mathematical Calculations: Perform any necessary calculations based on the context and available data. 
    3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
    
    Question: 
    {query_text}

    """
    chat_completion = client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": prompt_template,
            }
        ],
        model="llama-3.1-8b-instant",
    )
    return chat_completion.choices[0].message.content

def sbml_to_network(file_path):
    """
    Parse the SBML model, create a network of species and reactions, and return the pyvis.Network object.
    
    Args:
        file_path (str): Path to the SBML model file.
    
    Returns:
        pyvis.Network: Network object that can be visualized later.
    """
    reader = libsbml.SBMLReader()
    document = reader.readSBML(file_path)
    model = document.getModel()

    G = nx.Graph()

    for species in model.getListOfSpecies():
        species_id = species.getId()
        G.add_node(species_id, label=species_id, shape="dot", color="blue")
    
    for reaction in model.getListOfReactions():
        reaction_id = reaction.getId()
        substrates = [s.getSpecies() for s in reaction.getListOfReactants()]
        products = [p.getSpecies() for p in reaction.getListOfProducts()]
        
        for substrate in substrates:
            for product in products:
                G.add_edge(substrate, product, label=reaction_id, color="gray")

    net = Network(notebook=True)
    net.from_nx(G)
    
    net.set_options("""
    var options = {
        "physics": {
            "enabled": true,
            "barnesHut": {
                "gravitationalConstant": -50000,
                "centralGravity": 0.3,
                "springLength": 95
            },
            "maxVelocity": 50,
            "minVelocity": 0.1
        },
        "nodes": {
            "size": 20,
            "font": {
                "size": 18
            }
        },
        "edges": {
            "arrows": {
                "to": {
                    "enabled": true
                }
            }
        }
    }
    """)
    
    return net

def streamlit_app():
    st.title("BioModelsRAG")
    
    if "db" not in st.session_state:
        st.session_state.db = None

    search_str = st.text_input("Enter search query:")

    GROQ_API_KEY = st.text_input("Enter GROQ API Key (which is free to make!):")

    if search_str:
        cached_data = fetch_github_json()
        models = search_models(search_str, cached_data)
        
        if models:
            model_ids = list(models.keys())
            selected_models = st.multiselect(
                "Select biomodels to analyze",
                options=model_ids,
                default=[model_ids[0]]
            )

            if st.button("Visualize selected models"):
                for model_id in selected_models:
                    model_data = models[model_id]
                    model_url = model_data['url']

                    model_file_path = download_model_file(model_url, model_id)

                    net = sbml_to_network(model_file_path)

                    st.subheader(f"Model {model_data['title']}")
                    net.show(f"sbml_network_{model_id}.html")

                    HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
                    st.components.v1.html(HtmlFile.read(), height=600)

            if st.button("Analyze Selected Models"):
                
                for model_id in selected_models:
                    model_data = models[model_id]
                    
                    st.write(f"Selected model: {model_data['name']}")

                    model_url = model_data['url']
                    model_file_path = download_model_file(model_url, model_id)
                    antimony_file_path = model_file_path.replace(".xml", ".antimony")
                    
                    convert_sbml_to_antimony(model_file_path, antimony_file_path)
                    db, client = split_biomodels(antimony_file_path, GROQ_API_KEY, selected_models)
                    print(f"Model {model_id} {model_data['name']} has sucessfully been added to the database! :) ")

                else:
                    st.error("No items found in the models. Check if the Antimony files were generated correctly.")

        #generate response and remembering previous chat here
    
if __name__ == "__main__":
    streamlit_app()