File size: 14,426 Bytes
6963cf4
c85a5b0
3a463dd
 
 
 
c85a5b0
 
 
 
 
6963cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a463dd
 
4499595
a6b7cf0
 
 
aae512c
 
 
6963cf4
c85a5b0
 
 
 
3a463dd
c85a5b0
 
 
 
 
3a463dd
 
 
 
 
 
 
 
c85a5b0
 
1f960e0
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4499595
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
4499595
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a28eeb5
c85a5b0
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85a5b0
 
 
 
a28eeb5
3a463dd
 
 
a28eeb5
8bef2d8
4499595
 
 
3a463dd
8bef2d8
1f960e0
 
fd6cc24
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f960e0
3a463dd
c85a5b0
 
4499595
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b7cf0
3a463dd
 
c85a5b0
fd6cc24
c85a5b0
3a463dd
c85a5b0
 
fd6cc24
3a463dd
fd6cc24
 
 
c85a5b0
3a463dd
 
 
 
c85a5b0
3a463dd
c85a5b0
3a463dd
 
 
 
 
 
c85a5b0
 
8bd6bbb
3a463dd
 
 
 
 
c85a5b0
 
3a463dd
 
 
 
 
 
 
c85a5b0
3a463dd
c85a5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd6cc24
c85a5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bef2d8
4499595
01ff8b6
64f6421
3a463dd
c85a5b0
3a463dd
c85a5b0
 
3a463dd
 
 
 
 
 
 
 
 
 
8bd6bbb
01ff8b6
c85a5b0
64f6421
c85a5b0
3a463dd
c85a5b0
4499595
3a463dd
c85a5b0
3a463dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f960e0
 
 
fd6cc24
 
66f964e
1f960e0
c85a5b0
1f960e0
 
 
4499595
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import gradio as gr
import requests
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
from Bio.PDB.Polypeptide import is_aa
from Bio.SeqUtils import seq1
from typing import Optional, Tuple
import numpy as np
import os
from gradio_molecule3d import Molecule3D


from model_loader import load_model

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader

import re
import pandas as pd
import copy

import transformers, datasets
from transformers import AutoTokenizer
from transformers import DataCollatorForTokenClassification

from datasets import Dataset

from scipy.special import expit



# Load model and move to device
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
max_length = 1500
model, tokenizer = load_model(checkpoint, max_length)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()

def normalize_scores(scores):
    min_score = np.min(scores)
    max_score = np.max(scores)
    return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores

def read_mol(pdb_path):
    """Read PDB file and return its content as a string"""
    with open(pdb_path, 'r') as f:
        return f.read()

def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]:
    """
    Fetch the structure file for a given PDB ID. Prioritizes CIF files.
    If a structure file already exists locally, it uses that.
    """
    file_path = download_structure(pdb_id, output_dir)
    if file_path:
        return file_path
    else:
        return None

def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:
    """
    Attempt to download the structure file in CIF or PDB format.
    Returns the path to the downloaded file, or None if download fails.
    """
    for ext in ['.cif', '.pdb']:
        file_path = os.path.join(output_dir, f"{pdb_id}{ext}")
        if os.path.exists(file_path):
            return file_path
        url = f"https://files.rcsb.org/download/{pdb_id}{ext}"
        try:
            response = requests.get(url, timeout=10)
            if response.status_code == 200:
                with open(file_path, 'wb') as f:
                    f.write(response.content)
                return file_path
        except Exception as e:
            print(f"Download error for {pdb_id}{ext}: {e}")
    return None

def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str:
    """
    Convert a CIF file to PDB format using BioPython and return the PDB file path.
    """
    pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))
    parser = MMCIFParser(QUIET=True)
    structure = parser.get_structure('protein', cif_path)
    io = PDBIO()
    io.set_structure(structure)
    io.save(pdb_path)
    return pdb_path

def fetch_pdb(pdb_id):
    pdb_path = fetch_structure(pdb_id)
    if not pdb_path:
        return None
    _, ext = os.path.splitext(pdb_path)
    if ext == '.cif':
        pdb_path = convert_cif_to_pdb(pdb_path)
    return pdb_path

def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:
    """
    Create a PDB file with only the specified chain and replace B-factor with prediction scores
    """
    # Read the original PDB file
    parser = PDBParser(QUIET=True)
    structure = parser.get_structure('protein', input_pdb)
    
    # Prepare a new structure with only the specified chain
    new_structure = structure.copy()
    for model in new_structure:
        # Remove all chains except the specified one
        chains_to_remove = [chain for chain in model if chain.id != chain_id]
        for chain in chains_to_remove:
            model.detach_child(chain.id)
    
    # Create a modified PDB with scores in B-factor
    scores_dict = {resi: score for resi, score in residue_scores}
    for model in new_structure:
        for chain in model:
            for residue in chain:
                if residue.id[1] in scores_dict:
                    for atom in residue:
                        atom.bfactor = scores_dict[residue.id[1]] #* 100  # Scale score to B-factor range
    
    # Save the modified structure
    output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb"
    io = PDBIO()
    io.set_structure(new_structure)
    io.save(output_pdb)
    
    return output_pdb

def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):
    """
    Calculate the geometric center of high-scoring residues
    """
    parser = PDBParser(QUIET=True)
    structure = parser.get_structure('protein', pdb_path)
    
    # Collect coordinates of CA atoms from high-scoring residues
    coords = []
    for model in structure:
        for chain in model:
            if chain.id == chain_id:
                for residue in chain:
                    if residue.id[1] in high_score_residues:
                        if 'CA' in residue:  # Use alpha carbon as representative
                            ca_atom = residue['CA']
                            coords.append(ca_atom.coord)
    
    # Calculate geometric center
    if coords:
        center = np.mean(coords, axis=0)
        return center
    return None



def process_pdb(pdb_id_or_file, segment):
    # Determine if input is a PDB ID or file path
    if pdb_id_or_file.endswith('.pdb'):
        pdb_path = pdb_id_or_file
        pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]
    else:
        pdb_id = pdb_id_or_file
        pdb_path = fetch_pdb(pdb_id)
    
    if not pdb_path:
        return "Failed to fetch PDB file", None, None
    
    # Determine the file format and choose the appropriate parser
    _, ext = os.path.splitext(pdb_path)
    parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
    
    try:
        # Parse the structure file
        structure = parser.get_structure('protein', pdb_path)
    except Exception as e:
        return f"Error parsing structure file: {e}", None, None
    
    # Extract the specified chain
    try:
        chain = structure[0][segment]
    except KeyError:
        return "Invalid Chain ID", None, None
    
    protein_residues = [res for res in chain if is_aa(res)]
    sequence = "".join(seq1(res.resname) for res in protein_residues)
    sequence_id = [res.id[1] for res in protein_residues]
    
    # Prepare input for model prediction
    input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
    with torch.no_grad():
        outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
    
    # Calculate scores and normalize them
    scores = expit(outputs[:, 1] - outputs[:, 0])
    normalized_scores = normalize_scores(scores)
    
    # Zip residues with scores to track the residue ID and score
    residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]

    # Identify high and mid scoring residues
    high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
    mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]

    # Calculate geometric center of high-scoring residues
    geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)
    pymol_selection = f"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}"
    pymol_center_cmd = f"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}" if geo_center is not None else ""

    # Generate the result string
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
    result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
    result_str += "\n".join([
        f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}" 
        for i, res in enumerate(protein_residues)])
    
    # Create prediction and scored PDB files
    prediction_file = f"{pdb_id}_predictions.txt"
    with open(prediction_file, "w") as f:
        f.write(result_str)

    # Create chain-specific PDB with scores in B-factor
    scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)

    # Molecule visualization with updated script
    mol_vis = molecule(pdb_path, residue_scores, segment)

    # Construct PyMOL command suggestions
    pymol_commands = f"""
PyMOL Visualization Commands:
1. Load PDB: load {os.path.abspath(pdb_path)}
2. Select high-scoring residues: {pymol_selection}
3. Highlight high-scoring residues: show sticks, high_score_residues
{pymol_center_cmd}
"""
    
    return result_str + "\n\n" + pymol_commands, mol_vis, [prediction_file, scored_pdb]


def molecule(input_pdb, residue_scores=None, segment='A'):
    mol = read_mol(input_pdb)  # Read PDB file content

    # Prepare high-scoring residues script if scores are provided
    high_score_script = ""
    if residue_scores is not None:
        # Filter residues based on their scores
        high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
        mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
        
        high_score_script = """
        // Load the original model and apply white cartoon style
        let chainModel = viewer.addModel(pdb, "pdb");
        chainModel.setStyle({}, {});
        chainModel.setStyle(
            {"chain": "%s"}, 
            {"cartoon": {"color": "white"}}
        );

        // Create a new model for high-scoring residues and apply red sticks style
        let highScoreModel = viewer.addModel(pdb, "pdb");
        highScoreModel.setStyle({}, {});
        highScoreModel.setStyle(
            {"chain": "%s", "resi": [%s]}, 
            {"stick": {"color": "red"}}
        );

        // Create a new model for medium-scoring residues and apply orange sticks style
        let midScoreModel = viewer.addModel(pdb, "pdb");
        midScoreModel.setStyle({}, {});
        midScoreModel.setStyle(
            {"chain": "%s", "resi": [%s]}, 
            {"stick": {"color": "orange"}}
        );
        """ % (
            segment,
            segment,
            ", ".join(str(resi) for resi in high_score_residues),
            segment,
            ", ".join(str(resi) for resi in mid_score_residues)
        )
    
    # Generate the full HTML content
    html_content = f"""
    <!DOCTYPE html>
    <html>
    <head>    
        <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
        <style>
        .mol-container {{
            width: 100%;
            height: 700px;
            position: relative;
        }}
        </style>
        <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>
        <script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
    </head>
    <body>
        <div id="container" class="mol-container"></div>
        <script>
            let pdb = `{mol}`; // Use template literal to properly escape PDB content
            $(document).ready(function () {{
                let element = $("#container");
                let config = {{ backgroundColor: "white" }};
                let viewer = $3Dmol.createViewer(element, config);
                
                {high_score_script}
                
                // Add hover functionality
                viewer.setHoverable(
                    {{}}, 
                    true, 
                    function(atom, viewer, event, container) {{
                        if (!atom.label) {{
                            atom.label = viewer.addLabel(
                                atom.resn + ":" +atom.resi + ":" + atom.atom, 
                                {{
                                    position: atom, 
                                    backgroundColor: 'mintcream', 
                                    fontColor: 'black',
                                    fontSize: 12,
                                    padding: 2
                                }}
                            );
                        }}
                    }},
                    function(atom, viewer) {{
                        if (atom.label) {{
                            viewer.removeLabel(atom.label);
                            delete atom.label;
                        }}
                    }}
                );
                
                viewer.zoomTo();
                viewer.render();
                viewer.zoom(0.8, 2000);
            }});
        </script>
    </body>
    </html>
    """
    
    # Return the HTML content within an iframe safely encoded for special characters
    return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), "&quot;").replace(chr(39), "&#39;")}"></iframe>'


# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Protein Binding Site Prediction")
    
    with gr.Row():
        pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...")
        visualize_btn = gr.Button("Visualize Structure")

    molecule_output2 = Molecule3D(label="Protein Structure", reps=[
        {
            "model": 0,
            "style": "cartoon",
            "color": "whiteCarbon",
            "residue_range": "",
            "around": 0,
            "byres": False,
        }
    ])

    with gr.Row():
        segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
        prediction_btn = gr.Button("Predict Binding Site")


    molecule_output = gr.HTML(label="Protein Structure")
    predictions_output = gr.Textbox(label="Binding Site Predictions")
    download_output = gr.File(label="Download Files", file_count="multiple")
    
    prediction_btn.click(
        process_pdb, 
        inputs=[
            pdb_input, 
            segment_input
        ], 
        outputs=[predictions_output, molecule_output, download_output]
    )

    visualize_btn.click(
        fetch_pdb, 
        inputs=[pdb_input], 
        outputs=molecule_output2
    )

    gr.Markdown("## Examples")
    gr.Examples(
        examples=[
            ["7RPZ", "A"],
            ["2IWI", "B"],
            ["2F6V", "A"]
        ],
        inputs=[pdb_input, segment_input],
        outputs=[predictions_output, molecule_output, download_output]
    )

demo.launch(share=True)