File size: 15,251 Bytes
0337d3f
31fd85f
f406703
31fd85f
 
bc872ec
31fd85f
4e6d72a
31fd85f
610674c
 
bc872ec
 
48c5c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
 
 
 
 
 
 
 
 
610674c
31fd85f
91f8b58
 
4e6d72a
21b2af3
bc872ec
31fd85f
4e6d72a
bc872ec
 
 
31fd85f
 
 
bc872ec
31fd85f
 
 
bc872ec
610674c
bc872ec
44073b3
610674c
bc872ec
610674c
 
4e6d72a
 
 
610674c
bc872ec
610674c
91f8b58
d4b3c99
8735586
d4b3c99
 
8735586
91f8b58
8735586
d4b3c99
91f8b58
d4b3c99
8735586
d4b3c99
 
8735586
91f8b58
8735586
d4b3c99
8735586
91f8b58
d4b3c99
8735586
d4b3c99
 
8735586
91f8b58
8735586
d4b3c99
2aea707
 
 
 
 
 
 
 
 
 
8735586
0e7a640
 
 
2aea707
 
338949d
bc872ec
 
 
 
 
 
 
 
 
 
 
 
 
 
31fd85f
bc872ec
31fd85f
bc872ec
 
31fd85f
4e6d72a
 
 
31fd85f
 
 
4e6d72a
 
 
31fd85f
 
 
 
 
 
 
be625c5
bc872ec
31fd85f
 
 
be625c5
bc872ec
31fd85f
 
 
 
 
 
4e6d72a
bc872ec
 
 
 
 
 
be625c5
bc872ec
31fd85f
4e6d72a
 
44073b3
be625c5
bc872ec
4e6d72a
bc872ec
4e6d72a
bc872ec
4e6d72a
bc872ec
 
4e6d72a
 
 
 
 
31fd85f
be625c5
bc872ec
31fd85f
 
 
c365127
d8de06e
bc872ec
86bcd45
 
 
cb0345f
 
31fd85f
4e6d72a
 
8735586
4aae3e4
4e6d72a
31fd85f
4e6d72a
cd2dbd7
bc872ec
 
 
be625c5
bc872ec
31fd85f
4e6d72a
 
 
31fd85f
4e6d72a
cd2dbd7
 
 
 
 
 
31fd85f
bc872ec
4e6d72a
 
31fd85f
4e6d72a
 
 
10fed76
8735586
 
 
 
 
 
2aea707
4e567b5
268963b
4e567b5
8735586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9ea62
 
 
8735586
2c9ea62
 
 
10fed76
 
31fd85f
bc872ec
8735586
31fd85f
be625c5
31fd85f
 
4e6d72a
 
 
 
 
 
 
 
 
 
 
bc872ec
4e6d72a
 
 
 
 
bc872ec
4e6d72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc872ec
4e6d72a
31fd85f
 
4e6d72a
31fd85f
 
 
4e6d72a
31fd85f
 
8735586
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from flask import Flask, render_template, request, redirect, url_for, send_file
import os
import shutil
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load, dump
import numpy as np
from sklearn.preprocessing import LabelEncoder
from time import time
from huggingface_hub import hf_hub_download
import pickle
import uuid
from pathlib import Path
import numpy as np 
import pandas as pd 
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from xgboost import XGBRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PowerTransformer, StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split, cross_val_score, RandomizedSearchCV
import lightgbm as lgb
from catboost import CatBoostRegressor
from sklearn.ensemble import StackingRegressor

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"
MODEL_FOLDER = "models/"

os.makedirs(MODEL_FOLDER, exist_ok=True)

# Define the model directory and label encoder directory
MODEL_DIR = r'./Model'
LABEL_ENCODER_DIR = r'./Label_encoders'  # Renamed for clarity

# Global file names for outputs; these will be updated per prediction.
# Note: we now include a unique id to avoid overwriting.
PRED_OUTPUT_FILE = None
CLASS_OUTPUT_FILE = None

ALLOWED_EXTENSIONS = {'csv', 'xlsx'}

# Create directories if they do not exist.
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

app.config['DATA_FOLDER'] = DATA_FOLDER
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)

os.makedirs("data", exist_ok=True)

app.config['MODEL_FOLDER'] = MODEL_FOLDER
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)

# ------------------------------
# Load Models and Label Encoders
# ------------------------------

# Prediction analysis models loaded from Hugging Face.

src_path = hf_hub_download(
    repo_id="WebashalarForML/Diamond_model_",
    filename="models_list/mkble/DecisionTree_best_pipeline_mkble_0_to_0.99_al.pkl",
    cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_0_to_0.99_al.pkl")
shutil.copy(src_path, dst_path)
makable_model_0 = load(dst_path)

src_path = hf_hub_download(
    repo_id="WebashalarForML/Diamond_model_",
    filename="models_list/mkble/DecisionTree_best_pipeline_mkble_1_to_1.49.pkl",
    cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_1_to_1.49.pkl")
shutil.copy(src_path, dst_path)
makable_model_1 = load(dst_path)

# Prediction analysis models loaded from Hugging Face.
src_path = hf_hub_download(
    repo_id="WebashalarForML/Diamond_model_",
    filename="models_list/mkble/DecisionTree_best_pipeline_mkble_1.50_to_1.99.pkl",
    cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_1.50_to_1.99.pkl")
shutil.copy(src_path, dst_path)
makable_model_2 = load(dst_path)

#classsification model on the task
src_path = hf_hub_download(
    repo_id="WebashalarForML/Diamond_model_",
    filename="models_list/classification/3_pipeline.pkl",
    cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "3_pipeline.pkl")
shutil.copy(src_path, dst_path)
mkble_amt_class_model = load(dst_path)

#print("makable_model type:", type(makable_model))
#print("grade_model type:", type(grade_model))
#print("bygrade_model type:", type(bygrade_model))
#print("gia_model type:", type(gia_model))
print("================================")
print("mkble_amt_class_model type:", type(mkble_amt_class_model))

# List of label encoder names.
encoder_list = [
    'Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
    'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
    'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
    'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
    'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
    'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
    'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
    'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
    'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value'
]

# Load label encoders using pathlib for cleaner path management.
loaded_label_encoder = {}
enc_path = Path(LABEL_ENCODER_DIR)
for val in encoder_list:
    encoder_file = enc_path / f"label_encoder_{val}.joblib"
    loaded_label_encoder[val] = load(encoder_file)

# ------------------------------
# Utility: Allowed File Check
# ------------------------------
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# ------------------------------
# Routes
# ------------------------------
@app.route('/')
def index():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    if 'file' not in request.files:
        print('No file part', 'error')
        return redirect(url_for('index'))
    
    file = request.files['file']
    if file.filename == '':
        print('No selected file', 'error')
        return redirect(url_for('index'))
    
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)
        
        # Convert file to DataFrame
        try:
            if filename.endswith('.csv'):
                df = pd.read_csv(filepath)
            else:
                df = pd.read_excel(filepath)
        except Exception as e:
            print(f'Error reading file: {e}', 'error')
            return redirect(url_for('index'))
        
        # Process the DataFrame and generate predictions and classification analysis.
        df_pred, dx_class = process_dataframe(df)
        if df_pred.empty:
            print("Processed prediction DataFrame is empty. Check the input file and processing logic.", "error")
            return redirect(url_for('index'))
        
        # Save output files with a timestamp and unique id.
        current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
        unique_id = uuid.uuid4().hex[:8]
        global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
        PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}_{unique_id}.csv'
        CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}_{unique_id}.csv'
        df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
        dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
        
        # Redirect to report view; default to prediction report, page 1.
        return redirect(url_for('report_view', report_type='pred', page=1))
    else:
        print('Invalid file type. Only CSV and Excel files are allowed.', 'error')
        return redirect(url_for('index'))

def process_dataframe(df):
    try:
        #df = df[df["MkblAmt"].notna()]
        
        # Define the columns needed for two parts.
        required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
                           'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
                           'EngPav', 'EngAmt']
        required_columns_2 = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
                           'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
        
        # Create two DataFrames: one for prediction and one for classification.
        df_pred = df[required_columns].copy()
        #df_pred = df_pred[(df_pred[['EngCts']] > 0.99).all(axis=1) & (df_pred[['EngCts']] < 1.50).all(axis=1)] 
        df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
        df_class = df[required_columns_2].fillna("NA").copy()
        
        # Transform categorical columns for prediction DataFrame using the label encoders.
        for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
            try:
                df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
            except ValueError as e:
                print(f'Invalid value in column {col}: {e}', 'error')
                return pd.DataFrame(), pd.DataFrame()
        
        # Update the classification DataFrame with the transformed prediction columns.
        for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
            df_class[col] = df_pred[col]
        
        # Transform the extra columns in the classification DataFrame.
        #for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
        #    try:
        #        df_class[col] = loaded_label_encoder[col].transform(df_class[col])
        #    except ValueError as e:
        #        print(f'Invalid value in column {col}: {e}', 'error')
        #        return pd.DataFrame(), pd.DataFrame()
        
        # Convert both DataFrames to float.
        df_pred = df_pred.astype(float)
        df_class = df_class.astype(float)
        
        # -------------------------
        # Prediction Report Section
        # -------------------------
        try:
        
            # for model 0 to 0.99 
            df_pred_0 = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] < 0.99).all(axis=1)] 
            df_pred_0['change_in_amt_mkble'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred_0), columns=["pred_change_in_eng_to_mkble"])
            print(df_pred_0.columns)
            df_pred_0 = df_pred_0[['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
                               'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
                               'EngPav', 'EngAmt', 
                               'change_in_amt_mkble'
                              ]]
            df_pred_0['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model_0.predict(df_pred_0)), columns=["Predicted"])
            print(df_pred_0.columns)

            # for model 1 to 1.49

            df_pred_1 = df_pred[(df_pred[['EngCts']] > 0.99).all(axis=1) & (df_pred[['EngCts']] < 1.50).all(axis=1)] 
            df_pred_1['change_in_amt_mkble'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred_1), columns=["pred_change_in_eng_to_mkble"])
            print(df_pred_1.columns)
            df_pred_1 = df_pred_1[['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
                               'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
                               'EngPav', 'EngAmt', 
                               'change_in_amt_mkble'
                              ]]
            df_pred_1['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model_1.predict(df_pred_1)), columns=["Predicted"])
            print(df_pred_1.columns)

            # for model 1.50 to 1.99

            df_pred_2 = df_pred[(df_pred[['EngCts']] > 1.49).all(axis=1) & (df_pred[['EngCts']] < 2.00).all(axis=1)] 
            df_pred_2['change_in_amt_mkble'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred_2), columns=["pred_change_in_eng_to_mkble"])
            print(df_pred_2.columns)
            df_pred_2 = df_pred_2[['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
                               'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
                               'EngPav', 'EngAmt', 
                               'change_in_amt_mkble'
                              ]]
            df_pred_2['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model_2.predict(df_pred_2)), columns=["Predicted"])
            print(df_pred_2.columns)

            
            df_pred_main = pd.concat([df_pred_0, df_pred_1, df_pred_2])
            df_pred_main['Makable_Diff'] = df_pred_main['EngAmt'] - df_pred_main['Makable_Predicted']
            
            for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
                try:
                    df_pred_main[col] = loaded_label_encoder[col].inverse_transform(df_pred_main[col].astype(int))
                except ValueError as e:
                    print(f'inverse transform fails value in column {col}: {e}', 'error')
                    
        except ValueError as e:
            print(f'pred model error----->: {e}', 'error')
        
        # Final return with full data for pagination.
        return df_pred_main, df_pred_main
    except Exception as e:
        print(f'Error processing file: {e}', 'error')
        return pd.DataFrame(), pd.DataFrame()

# ------------------------------
# Report View Route with Pagination & Toggle
# ------------------------------
@app.route('/report')
def report_view():
    report_type = request.args.get('report_type', 'pred')
    try:
        page = int(request.args.get('page', 1))
    except ValueError:
        page = 1
    per_page = 15  # records per page

    # Read the appropriate CSV file.
    if report_type == 'pred':
        df = pd.read_csv(PRED_OUTPUT_FILE)
    else:
        df = pd.read_csv(CLASS_OUTPUT_FILE)

    start_idx = (page - 1) * per_page
    end_idx = start_idx + per_page
    total_records = len(df)
    
    df_page = df.iloc[start_idx:end_idx]
    table_html = df_page.to_html(classes="data-table", index=False)
    
    has_prev = page > 1
    has_next = end_idx < total_records
    
    return render_template('output.html',
                           table_html=table_html,
                           report_type=report_type,
                           page=page,
                           has_prev=has_prev,
                           has_next=has_next)

# ------------------------------
# Download Routes
# ------------------------------
@app.route('/download_pred', methods=['GET'])
def download_pred():
    return send_file(PRED_OUTPUT_FILE, as_attachment=True)

@app.route('/download_class', methods=['GET'])
def download_class():
    return send_file(CLASS_OUTPUT_FILE, as_attachment=True)

if __name__ == "__main__":
    app.run(debug=True)