File size: 7,397 Bytes
93a8bce
93f5629
4a03e59
93f5629
e88a32d
12cea06
4a03e59
b1387d5
4a03e59
1ea7edd
d62865a
d5a469d
 
b1387d5
 
 
e88a32d
 
 
93f5629
52ae10e
b1387d5
52ae10e
 
 
93f5629
52ae10e
fa24808
09e67fe
52ae10e
4a03e59
 
113bed9
 
09e67fe
113bed9
 
09e67fe
113bed9
4a03e59
 
52ae10e
4a03e59
113bed9
 
4a03e59
 
1ea7edd
4a03e59
d5a469d
 
 
 
 
 
 
4a03e59
e88a32d
1d42aa4
52ae10e
7820a52
 
 
 
 
 
 
 
 
 
12cea06
a9d7990
52ae10e
 
 
 
268b7e1
52ae10e
 
 
 
 
 
 
1d42aa4
52ae10e
1d42aa4
52ae10e
 
 
 
a9d7990
52ae10e
 
 
 
268b7e1
52ae10e
 
 
 
 
 
b1387d5
1d42aa4
b1387d5
1d42aa4
52ae10e
 
 
 
a9d7990
1ea7edd
4a03e59
113bed9
1ea7edd
113bed9
 
 
268b7e1
113bed9
 
 
 
268b7e1
4a03e59
113bed9
4a03e59
 
 
 
 
1d42aa4
4a03e59
1d42aa4
4a03e59
 
 
 
 
1ea7edd
4a03e59
113bed9
1ea7edd
113bed9
 
 
 
 
 
 
 
268b7e1
4a03e59
113bed9
4a03e59
 
 
 
 
1d42aa4
4a03e59
1d42aa4
4a03e59
 
 
 
9d94875
d5a469d
 
 
 
 
 
 
edf85c0
 
52ae10e
 
1d42aa4
 
 
 
d5a469d
52ae10e
a9d7990
52ae10e
 
a9d7990
12cea06
e88a32d
52ae10e
e88a32d
8a3f635
e077442
e88a32d
 
 
e077442
 
113bed9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import pandas as pd
import warnings
import math
import numpy as np
from utils.goat import call_inference
import io
import sys

# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")

# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)

# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path, device=device)

# Load additional models
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]

# Load the third and fourth models
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)

feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)

# Define class names for all models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image']
labels_3 = ['AI', 'Real']
labels_4 = ['AI', 'Real']

def softmax(vector):
    e = np.exp(vector - np.max(vector))  # for numerical stability
    return e / e.sum()

def convert_pil_to_bytes(image, format='JPEG'):
    img_byte_arr = io.BytesIO()
    image.save(img_byte_arr, format=format)
    img_byte_arr = img_byte_arr.getvalue()
    return img_byte_arr

@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):

    # Ensure the image is a PIL Image
    if not isinstance(img, Image.Image):
        raise ValueError(f"Expected a PIL Image, but got {type(img)}")
    
    # Convert the image to RGB if not already
    if img.mode != 'RGB':
        img_pil = img.convert('RGB')
    else:
        img_pil = img
    
    # Resize the image
    img_pil = transforms.Resize((256, 256))(img_pil)
    
    # Predict using the first model
    try:
        prediction_1 = clf_1(img_pil)
        result_1 = {pred['label']: pred['score'] for pred in prediction_1}
        print(result_1)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_1:
            if class_name not in result_1:
                result_1[class_name] = 0.0
        
        # Check if either class meets the confidence threshold
        if result_1['artificial'] >= confidence_threshold:
            label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
        elif result_1['real'] >= confidence_threshold:
            label_1 = f"Real, Confidence: {result_1['real']:.4f}"
        else:
            label_1 = "Uncertain Classification"
    except Exception as e:
        label_1 = f"Error: {str(e)}"
    
    # Predict using the second model
    try:
        prediction_2 = clf_2(img_pil)
        result_2 = {pred['label']: pred['score'] for pred in prediction_2}
        print(result_2)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_2:
            if class_name not in result_2:
                result_2[class_name] = 0.0
        
        # Check if either class meets the confidence threshold
        if result_2['AI Image'] >= confidence_threshold:
            label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
        elif result_2['Real Image'] >= confidence_threshold:
            label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
        else:
            label_2 = "Uncertain Classification"
    except Exception as e:
        label_2 = f"Error: {str(e)}"
    
    # Predict using the third model with softmax
    try:
        inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs_3 = model_3(**inputs_3)
            logits_3 = outputs_3.logits
            probabilities_3 = softmax(logits_3.cpu().numpy()[0])
            
        result_3 = {
            labels_3[0]: float(probabilities_3[0]),  # AI
            labels_3[1]: float(probabilities_3[1])   # Real
        }
        print(result_3)
        # Ensure the result dictionary contains all class names
        for class_name in labels_3:
            if class_name not in result_3:
                result_3[class_name] = 0.0
        
        # Check if either class meets the confidence threshold
        if result_3['AI'] >= confidence_threshold:
            label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
        elif result_3['Real'] >= confidence_threshold:
            label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
        else:
            label_3 = "Uncertain Classification"
    except Exception as e:
        label_3 = f"Error: {str(e)}"
    
    # Predict using the fourth model with softmax
    try:
        inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs_4 = model_4(**inputs_4)
            logits_4 = outputs_4.logits
            probabilities_4 = softmax(logits_4.cpu().numpy()[0])
        
        result_4 = {
            labels_4[0]: float(probabilities_4[0]),  # AI
            labels_4[1]: float(probabilities_4[1])   # Real
        }
        print(result_4)
        # Ensure the result dictionary contains all class names
        for class_name in labels_4:
            if class_name not in result_4:
                result_4[class_name] = 0.0
        
        # Check if either class meets the confidence threshold
        if result_4['AI'] >= confidence_threshold:
            label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
        elif result_4['Real'] >= confidence_threshold:
            label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
        else:
            label_4 = "Uncertain Classification"
    except Exception as e:
        label_4 = f"Error: {str(e)}"

    try:
        img_bytes = convert_pil_to_bytes(img_pil)
        response5_raw = call_inference(img_bytes)
        response5 = response5_raw.json()
        print(response5)
    except Exception as e:
        label_5 = f"Error: {str(e)}"
    
    
    # Combine results
    combined_results = {
        "SwinV2/detect": label_1,
        "ViT/AI-vs-Real": label_2,
        "Swin/SDXL": label_3,
        "Swin/SDXL-FLUX": label_4,
        "GOAT": label_5
    }
    
    return combined_results

# Define the Gradio interface
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil')  # Ensure the image type is PIL
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
label = gr.JSON(label="Model Predictions")

# Launch the interface
iface = gr.Interface(
    fn=predict_image,
    inputs=[image, confidence_slider],
    outputs=label,
    title="AI Generated Classification"
)
iface.launch()