Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 48,795 Bytes
f0c19c8 d0e6378 2eee123 81afc2a 2eee123 f0c19c8 2eee123 fc736fc 2eee123 9218bcd 090a3c3 f0c19c8 0daf532 f0c19c8 0daf532 12df6ee 0daf532 2eee123 9218bcd f0c19c8 2eee123 f0c19c8 26f4cb2 f0c19c8 2eee123 f0c19c8 2eee123 fc736fc 2eee123 f0c19c8 26f4cb2 e23373e 6ae4c84 2eee123 12df6ee 9218bcd 2eee123 fc736fc 2eee123 a9c30d8 2eee123 f0c19c8 26f4cb2 f269b29 e23373e f269b29 9218bcd 2eee123 9218bcd 2eee123 f0c19c8 6ae4c84 26f4cb2 f0c19c8 9218bcd 246df35 4cf1d23 9218bcd 4cf1d23 9218bcd 4cf1d23 9218bcd 4cf1d23 9218bcd 4cf1d23 9218bcd 4cf1d23 2eee123 26f4cb2 2eee123 26f4cb2 2eee123 090a3c3 6ae4c84 fc736fc 6ae4c84 9218bcd fc736fc 6ae4c84 9218bcd f0c19c8 2eee123 0daf532 f0c19c8 2eee123 6ae4c84 2eee123 49639b7 fc736fc 2eee123 fc736fc 2eee123 f0c19c8 0daf532 12df6ee f0c19c8 26f4cb2 400ee5c c58195d 6ae4c84 c58195d f0c19c8 26f4cb2 400ee5c c58195d 6ae4c84 c58195d f0c19c8 26f4cb2 090a3c3 9218bcd 090a3c3 9218bcd 090a3c3 9218bcd 090a3c3 9218bcd 090a3c3 2eee123 6ae4c84 2eee123 6ae4c84 2eee123 6ae4c84 9218bcd 6ae4c84 9218bcd 2eee123 9218bcd 2eee123 6ae4c84 2eee123 246df35 2eee123 6ae4c84 2eee123 9218bcd 2eee123 6ae4c84 2eee123 6ae4c84 2eee123 6ae4c84 2eee123 0daf532 6ae4c84 9218bcd c58195d 9218bcd c58195d 6ae4c84 c58195d d0e6378 9218bcd 26f4cb2 2eee123 0daf532 6ae4c84 9218bcd c58195d 9218bcd c58195d 6ae4c84 c58195d d0e6378 9218bcd f0c19c8 fc736fc 6ae4c84 9218bcd fc736fc 6ae4c84 fc736fc 9218bcd fc736fc 26f4cb2 f0c19c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
#!/usr/bin/env python3
import os
import glob
import base64
import time
import shutil
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from diffusers import StableDiffusionPipeline
from torch.utils.data import Dataset, DataLoader
import csv
import fitz # PyMuPDF
import requests
from PIL import Image
import cv2
import numpy as np
import logging
import asyncio
import aiofiles
from io import BytesIO
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math
import random
import re
# Logging setup with custom buffer
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# Page Configuration
st.set_page_config(
page_title="AI Vision & SFT Titans 🚀",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
}
)
# Initialize st.session_state
if 'history' not in st.session_state:
st.session_state['history'] = [] # Flat list for history
if 'builder' not in st.session_state:
st.session_state['builder'] = None
if 'model_loaded' not in st.session_state:
st.session_state['model_loaded'] = False
if 'processing' not in st.session_state:
st.session_state['processing'] = {}
if 'pdf_checkboxes' not in st.session_state:
st.session_state['pdf_checkboxes'] = {} # Shared cache for PDF checkboxes
if 'downloaded_pdfs' not in st.session_state:
st.session_state['downloaded_pdfs'] = {} # Cache for downloaded PDF paths
# Model Configuration Classes
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Datasets
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
full_text = f"{prompt} {response}"
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
input_ids = full_encoding["input_ids"].squeeze()
attention_mask = full_encoding["attention_mask"].squeeze()
labels = input_ids.clone()
prompt_len = prompt_encoding["input_ids"].shape[1]
if prompt_len < self.max_length:
labels[:prompt_len] = -100
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
class DiffusionDataset(Dataset):
def __init__(self, images, texts):
self.images = images
self.texts = texts
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return {"image": self.images[idx], "text": self.texts[idx]}
class TinyDiffusionDataset(Dataset):
def __init__(self, images):
self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return self.images[idx]
# Custom Tiny Diffusion Model
class TinyUNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(TinyUNet, self).__init__()
self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
self.mid = nn.Conv2d(64, 128, 3, padding=1)
self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
self.out = nn.Conv2d(32, out_channels, 3, padding=1)
self.time_embed = nn.Linear(1, 64)
def forward(self, x, t):
t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
x1 = F.relu(self.down1(x))
x2 = F.relu(self.down2(x1))
x_mid = F.relu(self.mid(x2)) + t_embed
x_up1 = F.relu(self.up1(x_mid))
x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
return self.out(x_up2)
class TinyDiffusion:
def __init__(self, model, timesteps=100):
self.model = model
self.timesteps = timesteps
self.beta = torch.linspace(0.0001, 0.02, timesteps)
self.alpha = 1 - self.beta
self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
def train(self, images, epochs=50):
dataset = TinyDiffusionDataset(images)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
device = torch.device("cpu")
self.model.to(device)
for epoch in range(epochs):
total_loss = 0
for x in dataloader:
x = x.to(device)
t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
noise = torch.randn_like(x)
alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
pred_noise = self.model(x_noisy, t)
loss = F.mse_loss(pred_noise, noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
return self
def generate(self, size=(64, 64), steps=100):
device = torch.device("cpu")
x = torch.randn(1, 3, size[0], size[1], device=device)
for t in reversed(range(steps)):
t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
pred_noise = self.model(x, t_tensor)
x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
if t > 0:
x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
x = torch.clamp(x * 255, 0, 255).byte()
return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
def upscale(self, image, scale_factor=2):
img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0
upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False)
upscaled = torch.clamp(upscaled * 255, 0, 255).byte()
return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy())
# Model Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... ⏳"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! ✅")
def evaluate(self, prompt: str, status_container=None):
self.model.eval()
if status_container:
status_container.write("Preparing to evaluate... 🧠")
try:
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
if status_container:
status_container.error(f"Oops! Something broke: {str(e)} 💥")
return f"Error: {str(e)}"
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
st.success(f"Diffusion model loaded! 🎨")
return self
def fine_tune_sft(self, images, texts, epochs=3):
dataset = DiffusionDataset(images, texts)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for epoch in range(epochs):
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
image = batch["image"][0].to(self.pipeline.device)
text = batch["text"][0]
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success("Diffusion SFT Fine-tuning completed! 🎨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... 💾"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! ✅")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
# Utility Functions
def generate_filename(sequence, ext="png"):
timestamp = time.strftime("%d%m%Y%H%M%S")
return f"{sequence}_{timestamp}.{ext}"
def pdf_url_to_filename(url):
# Convert full URL to filename, replacing illegal characters
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
return f"{safe_name}.pdf"
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
def get_model_files(model_type="causal_lm"):
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
return [d for d in glob.glob(path) if os.path.isdir(d)]
def get_gallery_files(file_types=["png"]):
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def get_pdf_files():
return sorted(glob.glob("*.pdf"))
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return True
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
return False
# Async Processing Functions
async def process_pdf_snapshot(pdf_path, mode="single"):
start_time = time.time()
status = st.empty()
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
try:
doc = fitz.open(pdf_path)
output_files = []
if mode == "single":
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale
output_file = generate_filename("single", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "twopage":
for i in range(min(2, len(doc))):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale
output_file = generate_filename(f"twopage_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "allthumbs":
for i in range(len(doc)):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail: 50% scale
output_file = generate_filename(f"thumb_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
doc.close()
elapsed = int(time.time() - start_time)
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
update_gallery()
return output_files
except Exception as e:
status.error(f"Failed to process PDF: {str(e)}")
return []
async def process_ocr(image, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing GOT-OCR2_0... (0s)")
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
result = model.chat(tokenizer, image, ocr_type='ocr')
elapsed = int(time.time() - start_time)
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
async with aiofiles.open(output_file, "w") as f:
await f.write(result)
update_gallery()
return result
async def process_image_gen(prompt, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing Image Gen... (0s)")
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
elapsed = int(time.time() - start_time)
status.text(f"Image Gen completed in {elapsed}s!")
gen_image.save(output_file)
update_gallery()
return gen_image
async def process_custom_diffusion(images, output_file, model_name):
start_time = time.time()
status = st.empty()
status.text(f"Training {model_name}... (0s)")
unet = TinyUNet()
diffusion = TinyDiffusion(unet)
diffusion.train(images)
gen_image = diffusion.generate()
upscaled_image = diffusion.upscale(gen_image, scale_factor=2)
elapsed = int(time.time() - start_time)
status.text(f"{model_name} completed in {elapsed}s!")
upscaled_image.save(output_file)
update_gallery()
return upscaled_image
# Mock Search Tool for RAG
def mock_search(query: str) -> str:
if "superhero" in query.lower():
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
return "No relevant results found."
def mock_duckduckgo_search(query: str) -> str:
if "superhero party trends" in query.lower():
return """
Latest trends for 2025:
- Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
- Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
- Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers.
"""
return "No relevant results found."
# Agent Classes
class PartyPlannerAgent:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def generate(self, prompt: str) -> str:
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def plan_party(self, task: str) -> pd.DataFrame:
search_result = mock_duckduckgo_search("latest superhero party trends")
prompt = f"Given this context: '{search_result}'\n{task}"
plan_text = self.generate(prompt)
locations = {
"Wayne Manor": (42.3601, -71.0589),
"New York": (40.7128, -74.0060),
"Los Angeles": (34.0522, -118.2437),
"London": (51.5074, -0.1278)
}
wayne_coords = locations["Wayne Manor"]
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
data = [
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
]
return pd.DataFrame(data)
class CVPartyPlannerAgent:
def __init__(self, pipeline):
self.pipeline = pipeline
def generate(self, prompt: str) -> Image.Image:
return self.pipeline(prompt, num_inference_steps=20).images[0]
def plan_party(self, task: str) -> pd.DataFrame:
search_result = mock_search("superhero party trends")
prompt = f"Given this context: '{search_result}'\n{task}"
data = [
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
]
return pd.DataFrame(data)
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
def to_radians(degrees: float) -> float:
return degrees * (math.pi / 180)
lat1, lon1 = map(to_radians, origin_coords)
lat2, lon2 = map(to_radians, destination_coords)
EARTH_RADIUS_KM = 6371.0
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
c = 2 * math.asin(math.sqrt(a))
distance = EARTH_RADIUS_KM * c
actual_distance = distance * 1.1
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
return round(flight_time, 2)
# Main App
st.title("AI Vision & SFT Titans 🚀")
# Sidebar
st.sidebar.header("Captured Files 📜")
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2) # Default to 2
def update_gallery():
media_files = get_gallery_files(["png"])
pdf_files = get_pdf_files()
if media_files or pdf_files:
st.sidebar.subheader("Images 📸")
cols = st.sidebar.columns(2)
for idx, file in enumerate(media_files[:gallery_size * 2]): # Limit by gallery size
with cols[idx % 2]:
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
st.sidebar.subheader("PDF Downloads 📖")
for pdf_file in pdf_files[:gallery_size * 2]: # Limit by gallery size
st.markdown(get_download_link(pdf_file, "application/pdf", f"📥 Grab {os.path.basename(pdf_file)}"), unsafe_allow_html=True)
update_gallery()
st.sidebar.subheader("Model Management 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type")
model_dirs = get_model_files(model_type)
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select")
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.rerun()
st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
st.sidebar.subheader("History 📜")
history_container = st.sidebar.empty()
with history_container:
for entry in st.session_state['history'][-gallery_size * 2:]: # Limit by gallery size
st.write(entry)
# Tabs
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs([
"Camera Snap 📷", "Download PDFs 📥", "Build Titan 🌱", "Fine-Tune Titan 🔧",
"Test Titan 🧪", "Agentic RAG Party 🌐", "Test OCR 🔍", "Test Image Gen 🎨", "Custom Diffusion 🎨🤓"
])
with tab1:
st.header("Camera Snap 📷")
st.subheader("Single Capture")
cols = st.columns(2)
with cols[0]:
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
if cam0_img:
filename = generate_filename("cam0")
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
entry = f"Snapshot from Cam 0: {filename}"
if entry not in st.session_state['history']:
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
update_gallery()
with cols[1]:
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
if cam1_img:
filename = generate_filename("cam1")
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
entry = f"Snapshot from Cam 1: {filename}"
if entry not in st.session_state['history']:
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
update_gallery()
with tab2:
st.header("Download PDFs 📥")
# Examples button with arXiv PDF links from README.md
if st.button("Examples 📚"):
example_urls = [
"https://arxiv.org/pdf/2308.03892", # Streamlit
"https://arxiv.org/pdf/1912.01703", # PyTorch
"https://arxiv.org/pdf/2408.11039", # Qwen2-VL
"https://arxiv.org/pdf/2109.10282", # TrOCR
"https://arxiv.org/pdf/2112.10752", # LDM
"https://arxiv.org/pdf/2308.11236", # OpenCV
"https://arxiv.org/pdf/1706.03762", # Attention is All You Need
"https://arxiv.org/pdf/2006.11239", # DDPM
"https://arxiv.org/pdf/2305.11207", # Pandas
"https://arxiv.org/pdf/2106.09685", # LoRA
"https://arxiv.org/pdf/2005.11401", # RAG
"https://arxiv.org/pdf/2106.10504" # Fine-Tuning Vision Transformers
]
st.session_state['pdf_urls'] = "\n".join(example_urls)
# Robo-Downloader
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
if st.button("Robo-Download 🤖"):
urls = url_input.strip().split("\n")
progress_bar = st.progress(0)
status_text = st.empty()
total_urls = len(urls)
existing_pdfs = get_pdf_files()
for idx, url in enumerate(urls):
if url:
output_path = pdf_url_to_filename(url)
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
if output_path not in existing_pdfs:
if download_pdf(url, output_path):
st.session_state['downloaded_pdfs'][url] = output_path
logger.info(f"Downloaded PDF from {url} to {output_path}")
entry = f"Downloaded PDF: {output_path}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
else:
st.error(f"Failed to nab {url} 😿")
else:
st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
st.session_state['downloaded_pdfs'][url] = output_path
progress_bar.progress((idx + 1) / total_urls)
status_text.text("Robo-Download complete! 🚀")
update_gallery()
# PDF Gallery with Thumbnails and Checkboxes
st.subheader("PDF Gallery 📖")
downloaded_pdfs = list(st.session_state['downloaded_pdfs'].values())
if downloaded_pdfs:
cols_per_row = 3
for i in range(0, len(downloaded_pdfs), cols_per_row):
cols = st.columns(cols_per_row)
for j, pdf_path in enumerate(downloaded_pdfs[i:i + cols_per_row]):
with cols[j]:
doc = fitz.open(pdf_path)
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail at 50% scale
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
st.image(img, caption=os.path.basename(pdf_path), use_container_width=True)
# Checkbox for SFT/Input use
checkbox_key = f"pdf_{pdf_path}"
st.session_state['pdf_checkboxes'][checkbox_key] = st.checkbox(
"Use for SFT/Input",
value=st.session_state['pdf_checkboxes'].get(checkbox_key, False),
key=checkbox_key
)
# Download and Delete Buttons
st.markdown(get_download_link(pdf_path, "application/pdf", "Snag It! 📥"), unsafe_allow_html=True)
if st.button("Zap It! 🗑️", key=f"delete_{pdf_path}"):
os.remove(pdf_path)
url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == pdf_path), None)
if url_key:
del st.session_state['downloaded_pdfs'][url_key]
del st.session_state['pdf_checkboxes'][checkbox_key]
st.success(f"PDF {os.path.basename(pdf_path)} vaporized! 💨")
st.rerun()
doc.close()
else:
st.info("No PDFs captured yet. Feed the robo-downloader some URLs! 🤖")
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (Thumbnails)"], key="download_mode")
if st.button("Snapshot Selected 📸"):
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
if selected_pdfs:
for pdf_path in selected_pdfs:
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (Thumbnails)": "allthumbs"}[mode]
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
for snapshot in snapshots:
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
else:
st.warning("No PDFs selected for snapshotting! Check some boxes first. 📝")
with tab3:
st.header("Build Titan 🌱")
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
base_model = st.selectbox("Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model ⬇️"):
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
entry = f"Built {model_type} model: {model_name}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
st.rerun()
with tab4:
st.header("Fine-Tune Titan 🔧")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
if st.button("Generate Sample CSV 📝"):
sample_data = [
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
]
csv_path = f"sft_data_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
writer.writeheader()
writer.writerows(sample_data)
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
st.success(f"Sample CSV generated as {csv_path}! ✅")
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
st.session_state['builder'].config = new_config
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
entry = f"Fine-tuned Causal LM: {new_model_name}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
st.rerun()
elif isinstance(st.session_state['builder'], DiffusionBuilder):
captured_files = get_gallery_files(["png"])
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
if len(captured_files) + len(selected_pdfs) >= 2:
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_files]
for pdf_path in selected_pdfs:
demo_data.append({"image": pdf_path, "text": f"PDF {os.path.basename(pdf_path)}"})
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
if st.button("Fine-Tune with Dataset 🔄"):
images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()]
texts = [row["text"] for _, row in edited_data.iterrows()]
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
st.session_state['builder'].config = new_config
st.session_state['builder'].fine_tune_sft(images, texts)
st.session_state['builder'].save_model(new_config.model_path)
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
entry = f"Fine-tuned Diffusion: {new_model_name}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
csv_path = f"sft_dataset_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for _, row in edited_data.iterrows():
writer.writerow([row["image"], row["text"]])
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
with tab5:
st.header("Test Titan 🧪")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
if st.session_state['builder'].sft_data:
st.write("Testing with SFT Data:")
for item in st.session_state['builder'].sft_data[:3]:
prompt = item["prompt"]
expected = item["response"]
status_container = st.empty()
generated = st.session_state['builder'].evaluate(prompt, status_container)
st.write(f"**Prompt**: {prompt}")
st.write(f"**Expected**: {expected}")
st.write(f"**Generated**: {generated}")
st.write("---")
status_container.empty()
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
if st.button("Run Test ▶️"):
status_container = st.empty()
result = st.session_state['builder'].evaluate(test_prompt, status_container)
entry = f"Causal LM Test: {test_prompt} -> {result}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.write(f"**Generated Response**: {result}")
status_container.empty()
elif isinstance(st.session_state['builder'], DiffusionBuilder):
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
if st.button("Run Test ▶️"):
image = st.session_state['builder'].generate(test_prompt)
output_file = generate_filename("diffusion_test", "png")
image.save(output_file)
entry = f"Diffusion Test: {test_prompt} -> {output_file}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.image(image, caption="Generated Image")
update_gallery()
with tab6:
st.header("Agentic RAG Party 🌐")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please build or load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
if st.button("Run NLP RAG Demo 🎉"):
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
task = "Plan a luxury superhero-themed party at Wayne Manor."
plan_df = agent.plan_party(task)
entry = f"NLP RAG Demo: Planned party at Wayne Manor"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.dataframe(plan_df)
elif isinstance(st.session_state['builder'], DiffusionBuilder):
if st.button("Run CV RAG Demo 🎉"):
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
task = "Generate images for a luxury superhero-themed party."
plan_df = agent.plan_party(task)
entry = f"CV RAG Demo: Generated party images"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.dataframe(plan_df)
for _, row in plan_df.iterrows():
image = agent.generate(row["Image Idea"])
output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png")
image.save(output_file)
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
update_gallery()
with tab7:
st.header("Test OCR 🔍")
captured_files = get_gallery_files(["png"])
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
all_files = captured_files + selected_pdfs
if all_files:
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Input Image", use_container_width=True)
if st.button("Run OCR 🚀", key="ocr_run"):
output_file = generate_filename("ocr_output", "txt")
st.session_state['processing']['ocr'] = True
result = asyncio.run(process_ocr(image, output_file))
entry = f"OCR Test: {selected_file} -> {output_file}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.text_area("OCR Result", result, height=200, key="ocr_result")
st.success(f"OCR output saved to {output_file}")
st.session_state['processing']['ocr'] = False
else:
st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
with tab8:
st.header("Test Image Gen 🎨")
captured_files = get_gallery_files(["png"])
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
all_files = captured_files + selected_pdfs
if all_files:
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Reference Image", use_container_width=True)
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
if st.button("Run Image Gen 🚀", key="gen_run"):
output_file = generate_filename("gen_output", "png")
st.session_state['processing']['gen'] = True
result = asyncio.run(process_image_gen(prompt, output_file))
entry = f"Image Gen Test: {prompt} -> {output_file}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.image(result, caption="Generated Image", use_container_width=True)
st.success(f"Image saved to {output_file}")
st.session_state['processing']['gen'] = False
else:
st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first WAV!")
with tab9:
st.header("Custom Diffusion 🎨🤓")
st.write("Unleash your inner artist with our tiny diffusion models!")
captured_files = get_gallery_files(["png"])
selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
all_files = captured_files + selected_pdfs
if all_files:
st.subheader("Select Images or PDFs to Train")
selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select")
images = []
for file in selected_files:
if file.endswith('.png'):
images.append(Image.open(file))
else:
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples))
doc.close()
model_options = [
("PixelTickler 🎨✨", "OFA-Sys/small-stable-diffusion-v0"),
("DreamWeaver 🌙🖌️", "stabilityai/stable-diffusion-2-base"),
("TinyArtBot 🤖🖼️", "custom")
]
model_choice = st.selectbox("Choose Your Diffusion Dynamo", [opt[0] for opt in model_options], key="diffusion_model")
model_name = next(opt[1] for opt in model_options if opt[0] == model_choice)
if st.button("Train & Generate 🚀", key="diffusion_run"):
output_file = generate_filename("custom_diffusion", "png")
st.session_state['processing']['diffusion'] = True
if model_name == "custom":
result = asyncio.run(process_custom_diffusion(images, output_file, model_choice))
else:
builder = DiffusionBuilder()
builder.load_model(model_name)
result = builder.generate("A superhero scene inspired by captured images")
result.save(output_file)
entry = f"Custom Diffusion: {model_choice} -> {output_file}"
if entry not in st.session_state['history']:
st.session_state['history'].append(entry)
st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True)
st.success(f"Image saved to {output_file}")
st.session_state['processing']['diffusion'] = False
else:
st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
# Initial Gallery Update
update_gallery() |