Spaces:
Sleeping
Sleeping
File size: 13,058 Bytes
460fdc7 42e8f64 b5a74d7 42e8f64 c40907d 2ec9b03 4f8bac4 2ec9b03 4f8bac4 2ec9b03 4f8bac4 0a8b643 4f8bac4 41cd010 4f8bac4 0bcbe4f b5a74d7 41cd010 78b788d 0a8b643 8c74b2d 41cd010 c95bda5 8c74b2d 41cd010 2af0c24 cf68488 41cd010 8c74b2d cf68488 22ec62d 4f8bac4 41cd010 8b7dfb4 0a8b643 4f8bac4 0a8b643 4f8bac4 41cd010 dae3ac5 0a8b643 41cd010 0a8b643 dae3ac5 f22976e 41cd010 cf68488 b5a74d7 f22976e e5599c2 f7b4006 0bcbe4f 4f8bac4 0bcbe4f 0a8b643 c95bda5 8c74b2d 2af0c24 4f8bac4 cf68488 8c74b2d cf68488 22ec62d 4f8bac4 41cd010 8b7dfb4 0a8b643 4f8bac4 0a8b643 4f8bac4 0bcbe4f 0a8b643 41cd010 0a8b643 0bcbe4f f22976e 41cd010 cf68488 b5a74d7 f22976e 0bcbe4f b5a74d7 41cd010 8b7dfb4 3fa7fe9 8b7dfb4 c95bda5 8b7dfb4 cf68488 02669a7 8b7dfb4 cf68488 22ec62d 8b7dfb4 41cd010 8b7dfb4 41cd010 8b7dfb4 f22976e 41cd010 cf68488 b5a74d7 f22976e 8b7dfb4 22ec62d 8b7dfb4 c95bda5 8b7dfb4 3fa7fe9 8b7dfb4 41cd010 4567668 f7b4006 7022131 7786ff5 2ec9b03 ca68f3b 4f8bac4 cf68488 f7b4006 8b7dfb4 7022131 3fa7fe9 22ec62d f7b4006 0a8b643 22ec62d b4c9d86 22ec62d 3fa7fe9 8b7dfb4 cf68488 7022131 f7b4006 2dc39dd b7b78a8 2dc39dd 097117b cf68488 7022131 f7b4006 d4ded0a b7b78a8 d4ded0a 097117b cf68488 7022131 f7b4006 2dc39dd 3e19f3e 2dc39dd 097117b cf68488 3fe7e68 172dd94 3fe7e68 172dd94 cf68488 3fe7e68 e513088 3fe7e68 097117b cf68488 4f8bac4 3fe7e68 097117b cf68488 3fe7e68 097117b cf68488 3fe7e68 097117b cf68488 7022131 f7b4006 2dc39dd b7b78a8 2dc39dd 097117b cf68488 296b387 0bcbe4f e8159e6 8c74b2d e8159e6 8c74b2d cf68488 40e7d39 4f8bac4 0a8b643 4f8bac4 cf68488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np # Import numpy
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
# Render stars in black with a slightly larger font
return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
# --- Plot Functions (Bar Chart - Modified with explicit tickvals) ---
def get_plots(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
# Use the raw numeric value from the CSV for GPU Energy
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
df['energy_score'] = df['energy_score'].astype(int).astype(str)
# Create a display model column for labeling
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
# Use the energy score to control color
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
# Now plot as a bar chart
fig = px.bar(
df,
x="Display Model",
y="total_gpu_energy",
color="energy_score",
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
# Update hover text to show the model and GPU Energy (with 4 decimals)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"GPU Energy (Wh): %{y:.4f}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(
xaxis_title="Model",
yaxis_title="GPU Energy (Wh)",
yaxis = dict(
tickformat=".4f",
tickvals = list(np.arange(0, df['total_gpu_energy'].max() + 1, 0.5)) # Ticks every 0.5 units
)
)
return fig
def get_all_plots():
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
df['energy_score'] = df['energy_score'].astype(int).astype(str)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
fig = px.bar(
all_df,
x="Display Model",
y="total_gpu_energy",
color="energy_score",
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"GPU Energy (Wh): %{y:.4f}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(
xaxis_title="Model",
yaxis_title="GPU Energy (Wh)",
yaxis = dict(
tickformat=".4f",
tickvals = list(np.arange(0, all_df['total_gpu_energy'].max() + 1, 0.5)) # Ticks every 0.5 units
)
)
return fig
# --- New functions for Text Generation filtering by model class (with Bar Chart - Modified explicit tickvals) ---
def get_text_generation_plots(model_class):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
# Filter by the selected model class if the "class" column exists
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
df['energy_score'] = df['energy_score'].astype(int).astype(str)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
fig = px.bar(
df,
x="Display Model",
y="total_gpu_energy",
color="energy_score",
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"GPU Energy (Wh): %{y:.4f}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(
xaxis_title="Model",
yaxis_title="GPU Energy (Wh)",
yaxis = dict(
tickformat=".4f",
tickvals = list(np.arange(0, df['total_gpu_energy'].max() + 1, 0.5)) # Ticks every 0.5 units
)
)
return fig
# --- Leaderboard Table Functions and Gradio Interface are unchanged ---
# (Keep the rest of the code same as previous response)
def get_model_names(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
# For leaderboard display, format GPU Energy to 4 decimals
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
# Remove any Class column if it exists
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
df = df.sort_values(by='GPU Energy (Wh)')
return df
def get_all_model_names():
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
df['energy_score'] = df['energy_score'].astype(int)
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
all_df = all_df.sort_values(by='GPU Energy (Wh)')
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
def get_text_generation_model_names(model_class):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['energy_score'] = df['energy_score'].astype(int)
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
# Remove the Class column if it exists
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
df = df.sort_values(by='GPU Energy (Wh)')
return df
def update_text_generation(model_class):
plot = get_text_generation_plots(model_class)
table = get_text_generation_model_names(model_class)
return plot, table
# --- Build the Gradio Interface ---
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
""")
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
)
with gr.Tabs():
# --- Text Generation Tab with Dropdown for Model Class ---
with gr.TabItem("Text Generation 💬"):
# Dropdown moved above the plot and leaderboard
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
label="Select Model Class",
value="A")
with gr.Row():
with gr.Column(scale=1.3):
tg_plot = gr.Plot(get_text_generation_plots("A"))
with gr.Column(scale=1):
tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown")
# Update plot and table when the dropdown value changes
model_class_dropdown.change(fn=update_text_generation,
inputs=model_class_dropdown,
outputs=[tg_plot, tg_table])
with gr.TabItem("Image Generation 📷"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_captioning.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('summarization.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('asr.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('object_detection.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('sentence_similarity.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('question_answering.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_all_plots())
with gr.Column():
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown(
"""Last updated: February 2025"""
)
demo.launch() |