File size: 13,058 Bytes
460fdc7
 
42e8f64
b5a74d7
42e8f64
c40907d
2ec9b03
4f8bac4
2ec9b03
 
4f8bac4
2ec9b03
4f8bac4
 
0a8b643
4f8bac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cd010
 
4f8bac4
 
 
 
 
0bcbe4f
b5a74d7
41cd010
78b788d
0a8b643
8c74b2d
 
41cd010
c95bda5
8c74b2d
41cd010
2af0c24
cf68488
41cd010
8c74b2d
cf68488
22ec62d
 
4f8bac4
41cd010
 
8b7dfb4
0a8b643
4f8bac4
 
0a8b643
4f8bac4
41cd010
dae3ac5
0a8b643
41cd010
 
0a8b643
 
dae3ac5
f22976e
41cd010
cf68488
b5a74d7
 
 
 
f22976e
e5599c2
f7b4006
0bcbe4f
4f8bac4
0bcbe4f
0a8b643
 
 
c95bda5
8c74b2d
2af0c24
4f8bac4
 
cf68488
8c74b2d
cf68488
22ec62d
4f8bac4
41cd010
 
8b7dfb4
0a8b643
4f8bac4
 
0a8b643
4f8bac4
0bcbe4f
0a8b643
41cd010
 
0a8b643
 
0bcbe4f
f22976e
41cd010
cf68488
b5a74d7
 
 
 
f22976e
0bcbe4f
 
b5a74d7
41cd010
8b7dfb4
 
 
 
3fa7fe9
8b7dfb4
 
c95bda5
8b7dfb4
 
cf68488
02669a7
8b7dfb4
cf68488
22ec62d
8b7dfb4
41cd010
 
8b7dfb4
 
 
 
 
 
 
 
41cd010
 
8b7dfb4
 
 
f22976e
41cd010
cf68488
b5a74d7
 
 
 
f22976e
8b7dfb4
 
22ec62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b7dfb4
 
 
 
 
 
 
c95bda5
8b7dfb4
 
3fa7fe9
 
8b7dfb4
 
 
 
 
 
 
 
41cd010
 
4567668
 
 
 
 
 
 
 
 
 
 
 
f7b4006
7022131
7786ff5
2ec9b03
 
ca68f3b
4f8bac4
cf68488
f7b4006
8b7dfb4
7022131
3fa7fe9
 
 
22ec62d
f7b4006
0a8b643
22ec62d
b4c9d86
22ec62d
3fa7fe9
8b7dfb4
 
 
cf68488
7022131
f7b4006
2dc39dd
b7b78a8
2dc39dd
097117b
cf68488
7022131
f7b4006
d4ded0a
b7b78a8
d4ded0a
097117b
cf68488
7022131
f7b4006
2dc39dd
3e19f3e
2dc39dd
097117b
cf68488
3fe7e68
 
 
172dd94
3fe7e68
172dd94
cf68488
3fe7e68
 
 
e513088
3fe7e68
097117b
cf68488
4f8bac4
3fe7e68
 
 
 
097117b
cf68488
3fe7e68
 
 
 
 
097117b
cf68488
3fe7e68
 
 
 
 
097117b
cf68488
7022131
f7b4006
2dc39dd
b7b78a8
2dc39dd
097117b
cf68488
296b387
0bcbe4f
e8159e6
8c74b2d
e8159e6
8c74b2d
cf68488
40e7d39
4f8bac4
 
 
 
 
 
 
0a8b643
 
 
4f8bac4
cf68488
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np  # Import numpy

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of tasks (CSV filenames)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    # Render stars in black with a slightly larger font
    return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'[{display_name}](https://huggingface.co/{mname})'

# --- Plot Functions (Bar Chart - Modified with explicit tickvals) ---

def get_plots(task):
    df = pd.read_csv('data/energy/' + task)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    # Use the raw numeric value from the CSV for GPU Energy
    df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
    df['energy_score'] = df['energy_score'].astype(int).astype(str)
    # Create a display model column for labeling
    df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])

    # Use the energy score to control color
    color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}

    # Now plot as a bar chart
    fig = px.bar(
        df,
        x="Display Model",
        y="total_gpu_energy",
        color="energy_score",
        custom_data=['energy_score'],
        height=500,
        width=800,
        color_discrete_map=color_map
    )
    # Update hover text to show the model and GPU Energy (with 4 decimals)
    fig.update_traces(
        hovertemplate="<br>".join([
            "Model: %{x}",
            "GPU Energy (Wh): %{y:.4f}",
            "Energy Score: %{customdata[0]}"
        ])
    )
    fig.update_layout(
        xaxis_title="Model",
        yaxis_title="GPU Energy (Wh)",
        yaxis = dict(
            tickformat=".4f",
            tickvals = list(np.arange(0, df['total_gpu_energy'].max() + 1, 0.5)) # Ticks every 0.5 units
        )
    )
    return fig

def get_all_plots():
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
        df['energy_score'] = df['energy_score'].astype(int).astype(str)
        df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])

    color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}

    fig = px.bar(
        all_df,
        x="Display Model",
        y="total_gpu_energy",
        color="energy_score",
        custom_data=['energy_score'],
        height=500,
        width=800,
        color_discrete_map=color_map
    )
    fig.update_traces(
        hovertemplate="<br>".join([
            "Model: %{x}",
            "GPU Energy (Wh): %{y:.4f}",
            "Energy Score: %{customdata[0]}"
        ])
    )
    fig.update_layout(
        xaxis_title="Model",
        yaxis_title="GPU Energy (Wh)",
        yaxis = dict(
            tickformat=".4f",
            tickvals = list(np.arange(0, all_df['total_gpu_energy'].max() + 1, 0.5)) # Ticks every 0.5 units
        )
    )
    return fig

# --- New functions for Text Generation filtering by model class (with Bar Chart - Modified explicit tickvals) ---

def get_text_generation_plots(model_class):
    df = pd.read_csv('data/energy/text_generation.csv')
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    # Filter by the selected model class if the "class" column exists
    if 'class' in df.columns:
        df = df[df['class'] == model_class]
    df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
    df['energy_score'] = df['energy_score'].astype(int).astype(str)
    df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])


    color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}

    fig = px.bar(
        df,
        x="Display Model",
        y="total_gpu_energy",
        color="energy_score",
        custom_data=['energy_score'],
        height=500,
        width=800,
        color_discrete_map=color_map
    )
    fig.update_traces(
        hovertemplate="<br>".join([
            "Model: %{x}",
            "GPU Energy (Wh): %{y:.4f}",
            "Energy Score: %{customdata[0]}"
        ])
    )
    fig.update_layout(
        xaxis_title="Model",
        yaxis_title="GPU Energy (Wh)",
        yaxis = dict(
            tickformat=".4f",
            tickvals = list(np.arange(0, df['total_gpu_energy'].max() + 1, 0.5)) # Ticks every 0.5 units
        )
    )
    return fig


# --- Leaderboard Table Functions and Gradio Interface are unchanged ---
# (Keep the rest of the code same as previous response)

def get_model_names(task):
    df = pd.read_csv('data/energy/' + task)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    df['energy_score'] = df['energy_score'].astype(int)
    # For leaderboard display, format GPU Energy to 4 decimals
    df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    # Remove any Class column if it exists
    df = df[['Model', 'GPU Energy (Wh)', 'Score']]
    df = df.sort_values(by='GPU Energy (Wh)')
    return df

def get_all_model_names():
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        df['energy_score'] = df['energy_score'].astype(int)
        df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
        df['Model'] = df['model'].apply(make_link)
        df['Score'] = df['energy_score'].apply(format_stars)
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    all_df = all_df.sort_values(by='GPU Energy (Wh)')
    return all_df[['Model', 'GPU Energy (Wh)', 'Score']]


def get_text_generation_model_names(model_class):
    df = pd.read_csv('data/energy/text_generation.csv')
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    if 'class' in df.columns:
        df = df[df['class'] == model_class]
    df['energy_score'] = df['energy_score'].astype(int)
    df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    # Remove the Class column if it exists
    df = df[['Model', 'GPU Energy (Wh)', 'Score']]
    df = df.sort_values(by='GPU Energy (Wh)')
    return df

def update_text_generation(model_class):
    plot = get_text_generation_plots(model_class)
    table = get_text_generation_model_names(model_class)
    return plot, table

# --- Build the Gradio Interface ---

demo = gr.Blocks(css="""
.gr-dataframe table {
    table-layout: fixed;
    width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
""")

with demo:
    gr.Markdown(
        """# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
    )

    with gr.Tabs():
        # --- Text Generation Tab with Dropdown for Model Class ---
        with gr.TabItem("Text Generation 💬"):
            # Dropdown moved above the plot and leaderboard
            model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
                                                 label="Select Model Class",
                                                 value="A")
            with gr.Row():
                with gr.Column(scale=1.3):
                    tg_plot = gr.Plot(get_text_generation_plots("A"))
                with gr.Column(scale=1):
                    tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown")
            # Update plot and table when the dropdown value changes
            model_class_dropdown.change(fn=update_text_generation,
                                        inputs=model_class_dropdown,
                                        outputs=[tg_plot, tg_table])

        with gr.TabItem("Image Generation 📷"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('image_generation.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")

        with gr.TabItem("Text Classification 🎭"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('text_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")

        with gr.TabItem("Image Classification 🖼️"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('image_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")

        with gr.TabItem("Image Captioning 📝"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('image_captioning.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")

        with gr.TabItem("Summarization 📃"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('summarization.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")

        with gr.TabItem("Automatic Speech Recognition 💬"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('asr.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")

        with gr.TabItem("Object Detection 🚘"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('object_detection.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")

        with gr.TabItem("Sentence Similarity 📚"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('sentence_similarity.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")

        with gr.TabItem("Extractive QA ❔"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('question_answering.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")

        with gr.TabItem("All Tasks 💡"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_all_plots())
                with gr.Column():
                    table = gr.Dataframe(get_all_model_names(), datatype="markdown")

    with gr.Accordion("📙 Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown(
        """Last updated: February 2025"""
    )

demo.launch()