File size: 195,424 Bytes
a60f1c0
 
 
 
 
 
a1ed77d
a60f1c0
 
6384d58
8c52eff
a1ed77d
 
 
 
 
 
7fa25f7
efb47b3
 
4d9b5c3
 
 
a74a30d
 
a566db2
 
84e165d
27f90be
16ed767
b37a702
a60f1c0
b37a702
8c52eff
 
 
35c3de6
 
7513911
a60f1c0
 
 
 
35c3de6
 
 
a60f1c0
b37a702
 
 
 
 
 
 
 
4d8869d
 
b37a702
4d8869d
 
b37a702
 
4d8869d
 
b37a702
08bd0cf
4d8869d
b37a702
08bd0cf
b37a702
a60f1c0
 
 
 
 
 
57cb1ac
 
35c3de6
 
 
a60f1c0
 
 
 
87de8af
a60f1c0
 
 
8ce2887
 
7513911
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
473c7a8
efb47b3
 
87de8af
e509f96
473c7a8
e509f96
 
 
 
 
bc15b27
 
 
 
efb47b3
a60f1c0
2bcda22
a60f1c0
f7bff1c
b37a702
 
2af44a9
b37a702
 
 
 
 
 
 
 
f7bff1c
 
 
 
 
 
 
 
 
 
 
 
2bcda22
 
 
 
 
 
 
 
ed262cf
 
f7bff1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
 
 
ed262cf
f7bff1c
 
 
 
 
 
 
8c52eff
 
 
 
 
 
b37a702
a2d2271
 
373b768
 
 
 
 
 
a2d2271
b37a702
a2d2271
16ed767
 
 
 
 
 
 
a2d2271
b37a702
2bcda22
 
 
 
 
 
 
 
efb47b3
 
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
 
473c7a8
eb8c873
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
473c7a8
eb8c873
a60f1c0
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
473c7a8
eb8c873
 
 
 
473c7a8
 
 
 
 
 
 
 
efb47b3
473c7a8
 
 
 
 
 
 
 
 
b37a702
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
 
 
 
 
 
 
 
 
 
 
a7058dd
 
 
 
66c3b07
 
 
 
 
 
473c7a8
66c3b07
473c7a8
 
 
 
 
 
 
 
 
 
66c3b07
 
 
 
 
 
a7058dd
 
473c7a8
a7058dd
66c3b07
 
 
 
a7058dd
 
66c3b07
 
 
 
 
473c7a8
8ce2887
66c3b07
8ce2887
473c7a8
 
a7058dd
473c7a8
 
 
 
 
66c3b07
 
473c7a8
 
 
 
 
66c3b07
 
 
 
 
 
 
 
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
473c7a8
 
 
76771b5
 
 
 
5cfd2b7
76771b5
5cfd2b7
 
 
 
473c7a8
5cfd2b7
 
76771b5
 
 
 
5cfd2b7
76771b5
473c7a8
 
 
 
76771b5
 
 
473c7a8
66c3b07
473c7a8
66c3b07
 
473c7a8
5cfd2b7
473c7a8
 
5cfd2b7
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
473c7a8
66c3b07
473c7a8
66c3b07
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
 
473c7a8
 
 
 
 
66c3b07
 
473c7a8
 
76771b5
 
a566db2
473c7a8
66c3b07
 
b37a702
66c3b07
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
473c7a8
 
 
 
 
 
 
 
 
66c3b07
 
 
473c7a8
eb8c873
473c7a8
eb8c873
a60f1c0
 
a2d2271
a60f1c0
eb8c873
 
 
 
473c7a8
66c3b07
 
eb8c873
 
 
473c7a8
a60f1c0
473c7a8
eb8c873
a60f1c0
 
eb8c873
473c7a8
66c3b07
 
 
 
 
 
 
 
b37a702
eb8c873
 
 
473c7a8
a60f1c0
eb8c873
b37a702
2bcda22
b37a702
 
 
 
66c3b07
b37a702
 
 
 
 
 
 
 
66c3b07
b37a702
a2d2271
b37a702
 
 
 
 
 
 
 
 
 
 
2bcda22
 
 
 
 
ed262cf
 
 
2bcda22
 
e55c416
2bcda22
 
ed262cf
2bcda22
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
b37a702
 
 
 
eb8c873
 
473c7a8
eb8c873
 
66c3b07
 
eb8c873
 
 
 
 
 
efb47b3
2bcda22
 
 
e55c416
 
 
 
2bcda22
 
e55c416
2bcda22
e55c416
2bcda22
e55c416
2bcda22
e55c416
2bcda22
e55c416
2bcda22
e55c416
2bcda22
e55c416
2bcda22
e55c416
2bcda22
4a85449
2bcda22
e3bd69b
87de8af
35c3de6
b37a702
 
35c3de6
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
 
f7bff1c
35c3de6
 
 
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
8c52eff
35c3de6
 
 
 
 
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
8c52eff
35c3de6
 
 
8c52eff
35c3de6
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
8c52eff
 
35c3de6
 
 
 
 
b37a702
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
8c52eff
35c3de6
 
8c52eff
35c3de6
 
 
8c52eff
35c3de6
8c52eff
35c3de6
 
 
 
 
 
 
a1ed77d
35c3de6
 
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
35c3de6
 
 
 
b37a702
35c3de6
 
 
 
 
b37a702
35c3de6
 
 
 
 
 
 
 
 
 
 
3380de9
35c3de6
 
 
 
3380de9
35c3de6
3380de9
35c3de6
 
3380de9
35c3de6
 
3380de9
35c3de6
 
 
 
 
 
 
 
 
 
 
3380de9
35c3de6
 
 
 
 
3380de9
f7bff1c
35c3de6
 
 
 
3380de9
35c3de6
 
 
 
 
 
 
 
3380de9
 
35c3de6
 
 
3380de9
35c3de6
 
 
 
 
 
f7bff1c
35c3de6
 
3380de9
35c3de6
 
 
 
3380de9
35c3de6
 
3380de9
35c3de6
 
 
3380de9
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
35c3de6
b37a702
35c3de6
 
 
 
 
 
 
 
 
 
 
 
b37a702
35c3de6
 
f7bff1c
35c3de6
8c52eff
35c3de6
 
 
 
 
 
 
 
 
b37a702
2bcda22
35c3de6
2bcda22
8c18f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
8c18f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c3de6
 
2bcda22
 
35c3de6
 
2bcda22
35c3de6
 
2bcda22
35c3de6
2bcda22
35c3de6
2bcda22
 
35c3de6
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
2bcda22
35c3de6
 
 
 
2bcda22
35c3de6
 
2bcda22
35c3de6
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
2bcda22
35c3de6
 
2bcda22
35c3de6
2bcda22
35c3de6
2bcda22
35c3de6
 
 
2bcda22
35c3de6
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
2bcda22
35c3de6
2bcda22
35c3de6
2bcda22
 
35c3de6
 
2bcda22
35c3de6
 
2bcda22
35c3de6
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
2bcda22
35c3de6
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
2bcda22
35c3de6
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
 
35c3de6
 
 
 
 
 
2bcda22
 
35c3de6
 
2bcda22
35c3de6
 
2bcda22
35c3de6
 
 
2bcda22
35c3de6
 
 
 
2bcda22
35c3de6
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
 
 
35c3de6
 
 
 
 
 
 
 
 
 
 
2bcda22
 
35c3de6
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
2bcda22
35c3de6
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
 
35c3de6
2bcda22
 
35c3de6
 
 
 
 
 
 
 
 
2bcda22
b37a702
35c3de6
87de8af
473c7a8
35c3de6
 
e81fdea
 
35c3de6
e81fdea
35c3de6
 
 
e81fdea
35c3de6
 
e81fdea
35c3de6
 
b37a702
35c3de6
 
 
f7bff1c
35c3de6
 
2bcda22
35c3de6
 
 
 
 
2bcda22
35c3de6
 
 
 
 
ed262cf
35c3de6
 
 
 
ed262cf
35c3de6
 
f7bff1c
35c3de6
f7bff1c
35c3de6
 
 
 
 
 
 
ed262cf
35c3de6
 
ed262cf
35c3de6
f7bff1c
35c3de6
f7bff1c
35c3de6
 
 
 
 
 
b37a702
35c3de6
 
b37a702
35c3de6
 
 
2bcda22
35c3de6
 
2bcda22
35c3de6
 
b37a702
35c3de6
 
 
 
b37a702
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
 
35c3de6
473c7a8
35c3de6
 
8ce2887
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81fdea
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
 
b37a702
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
8c52eff
ed262cf
 
 
 
 
 
b37a702
f7bff1c
 
ed262cf
 
b37a702
 
ed262cf
 
 
b37a702
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
2bcda22
 
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
2bcda22
 
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
2bcda22
35c3de6
 
 
 
 
 
 
 
 
2af44a9
35c3de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
063bd99
35c3de6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
import os
import argparse
import logging
import pickle
import threading
import time
import warnings
from datetime import datetime, timedelta
from collections import defaultdict
import csv 
import json

# Suppress warnings for cleaner output
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning, module='umap')
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')

import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, r2_score
from scipy.interpolate import interp1d, RBFInterpolator, griddata
from scipy.ndimage import gaussian_filter
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr
import urllib.request
from urllib.error import URLError
import ssl

# NEW: Advanced ML imports
try:
    import umap.umap_ as umap
    UMAP_AVAILABLE = True
except ImportError:
    UMAP_AVAILABLE = False
    print("UMAP not available - clustering features limited")

# Optional CNN imports with robust error handling
CNN_AVAILABLE = False
try:
    # Set environment variables before importing TensorFlow
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # Suppress TensorFlow warnings
    import tensorflow as tf
    from tensorflow.keras import layers, models
    # Test if TensorFlow actually works
    tf.config.set_visible_devices([], 'GPU')  # Disable GPU to avoid conflicts
    CNN_AVAILABLE = True
    print("TensorFlow successfully loaded - CNN features enabled")
except Exception as e:
    CNN_AVAILABLE = False
    print(f"TensorFlow not available - CNN features disabled: {str(e)[:100]}...")

try:
    import cdsapi
    CDSAPI_AVAILABLE = True
except ImportError:
    CDSAPI_AVAILABLE = False

import tropycal.tracks as tracks

# Suppress SSL warnings for oceanic data downloads
ssl._create_default_https_context = ssl._create_unverified_context

# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Remove argument parser to simplify startup
DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir()

# Ensure directory exists and is writable
try:
    os.makedirs(DATA_PATH, exist_ok=True)
    # Test write permissions
    test_file = os.path.join(DATA_PATH, 'test_write.txt')
    with open(test_file, 'w') as f:
        f.write('test')
    os.remove(test_file)
    logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
    logging.warning(f"Data directory not writable, using temp dir: {e}")
    DATA_PATH = tempfile.mkdtemp()
    logging.info(f"Using temporary directory: {DATA_PATH}")

# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')

# IBTrACS settings
BASIN_FILES = {
    'EP': 'ibtracs.EP.list.v04r01.csv',
    'NA': 'ibtracs.NA.list.v04r01.csv',
    'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1

# -----------------------------
# ENHANCED: Color Maps and Standards with TD Support - FIXED TAIWAN CLASSIFICATION
# -----------------------------
# Enhanced color mapping with TD support (for Plotly)
enhanced_color_map = {
    'Unknown': 'rgb(200, 200, 200)',
    'Tropical Depression': 'rgb(128, 128, 128)',  # Gray for TD
    'Tropical Storm': 'rgb(0, 0, 255)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C5 Super Typhoon': 'rgb(255, 0, 0)'
}

# Matplotlib-compatible color mapping (hex colors)
matplotlib_color_map = {
    'Unknown': '#C8C8C8',
    'Tropical Depression': '#808080',  # Gray for TD
    'Tropical Storm': '#0000FF',       # Blue
    'C1 Typhoon': '#00FFFF',          # Cyan
    'C2 Typhoon': '#00FF00',          # Green
    'C3 Strong Typhoon': '#FFFF00',   # Yellow
    'C4 Very Strong Typhoon': '#FFA500', # Orange
    'C5 Super Typhoon': '#FF0000'     # Red
}

# FIXED: Taiwan color mapping with correct CMA 2006 standards
taiwan_color_map_fixed = {
    'Tropical Depression': '#808080',     # Gray
    'Tropical Storm': '#0000FF',          # Blue
    'Severe Tropical Storm': '#00FFFF',   # Cyan
    'Typhoon': '#FFFF00',                 # Yellow
    'Severe Typhoon': '#FFA500',          # Orange
    'Super Typhoon': '#FF0000'            # Red
}

def rgb_string_to_hex(rgb_string):
    """Convert 'rgb(r,g,b)' string to hex color for matplotlib"""
    try:
        # Extract numbers from 'rgb(r,g,b)' format
        import re
        numbers = re.findall(r'\d+', rgb_string)
        if len(numbers) == 3:
            r, g, b = map(int, numbers)
            return f'#{r:02x}{g:02x}{b:02x}'
        else:
            return '#808080'  # Default gray
    except:
        return '#808080'  # Default gray

def get_matplotlib_color(category):
    """Get matplotlib-compatible color for a storm category"""
    return matplotlib_color_map.get(category, '#808080')

def get_taiwan_color_fixed(category):
    """Get corrected Taiwan standard color"""
    return taiwan_color_map_fixed.get(category, '#808080')

# Cluster colors for route visualization
CLUSTER_COLORS = [
    '#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7',
    '#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9',
    '#F8C471', '#82E0AA', '#F1948A', '#85C1E9', '#D2B4DE'
]

# Route prediction colors
ROUTE_COLORS = [
    '#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF',
    '#FF00CC', '#00FFCC', '#CC00FF', '#CCFF00', '#00CCFF'
]

# Original color map for backward compatibility
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'Tropical Storm': 'rgb(0, 0, 255)',
    'Tropical Depression': 'rgb(128, 128, 128)'
}

atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

# FIXED: Taiwan standard with correct CMA 2006 thresholds
taiwan_standard_fixed = {
    'Super Typhoon': {'wind_speed_ms': 51.0, 'wind_speed_kt': 99.2, 'color': 'Red', 'hex': '#FF0000'},
    'Severe Typhoon': {'wind_speed_ms': 41.5, 'wind_speed_kt': 80.7, 'color': 'Orange', 'hex': '#FFA500'},
    'Typhoon': {'wind_speed_ms': 32.7, 'wind_speed_kt': 63.6, 'color': 'Yellow', 'hex': '#FFFF00'},
    'Severe Tropical Storm': {'wind_speed_ms': 24.5, 'wind_speed_kt': 47.6, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed_ms': 17.2, 'wind_speed_kt': 33.4, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed_ms': 0, 'wind_speed_kt': 0, 'color': 'Gray', 'hex': '#808080'}
}

# -----------------------------
# ENHANCED: Oceanic Data Integration
# -----------------------------

class OceanicDataManager:
    """Manages real-time oceanic data for enhanced typhoon prediction"""
    
    def __init__(self):
        self.sst_base_url = "https://www.ncei.noaa.gov/erddap/griddap/NOAA_OISST_V2.nc"
        self.slp_base_url = "https://psl.noaa.gov/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface/slp.nc"
        self.cache_dir = os.path.join(DATA_PATH, 'oceanic_cache')
        self.create_cache_directory()
        
    def create_cache_directory(self):
        """Create cache directory for oceanic data"""
        try:
            os.makedirs(self.cache_dir, exist_ok=True)
        except Exception as e:
            logging.warning(f"Could not create cache directory: {e}")
            self.cache_dir = tempfile.mkdtemp()
    
    def get_sst_data(self, lat_min, lat_max, lon_min, lon_max, date_start, date_end=None):
        """
        Fetch Sea Surface Temperature data from NOAA OISST v2
        
        Parameters:
        lat_min, lat_max: Latitude bounds
        lon_min, lon_max: Longitude bounds  
        date_start: Start date (datetime or string)
        date_end: End date (datetime or string, optional)
        """
        try:
            if date_end is None:
                date_end = date_start
                
            # Convert dates to strings if needed
            if isinstance(date_start, datetime):
                date_start_str = date_start.strftime('%Y-%m-%d')
            else:
                date_start_str = str(date_start)
                
            if isinstance(date_end, datetime):
                date_end_str = date_end.strftime('%Y-%m-%d')
            else:
                date_end_str = str(date_end)
            
            # Construct ERDDAP URL with parameters
            url_params = (
                f"?sst[({date_start_str}):1:({date_end_str})]"
                f"[({lat_min}):1:({lat_max})]"
                f"[({lon_min}):1:({lon_max})]"
            )
            full_url = self.sst_base_url + url_params
            
            logging.info(f"Fetching SST data from: {full_url}")
            
            # Use xarray to open the remote dataset
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                ds = xr.open_dataset(full_url)
                
                # Extract SST data
                sst_data = ds['sst'].values
                lats = ds['latitude'].values
                lons = ds['longitude'].values
                times = ds['time'].values
                
                ds.close()
                
                return {
                    'sst': sst_data,
                    'latitude': lats,
                    'longitude': lons,
                    'time': times,
                    'success': True
                }
                
        except Exception as e:
            logging.error(f"Error fetching SST data: {e}")
            return self._get_fallback_sst_data(lat_min, lat_max, lon_min, lon_max)
    
    def get_slp_data(self, lat_min, lat_max, lon_min, lon_max, date_start, date_end=None):
        """
        Fetch Sea Level Pressure data from NCEP/NCAR Reanalysis
        
        Parameters similar to get_sst_data
        """
        try:
            if date_end is None:
                date_end = date_start
                
            # Convert dates for OPeNDAP access
            if isinstance(date_start, datetime):
                # NCEP uses different time indexing, may need adjustment
                date_start_str = date_start.strftime('%Y-%m-%d')
            else:
                date_start_str = str(date_start)
                
            if isinstance(date_end, datetime):
                date_end_str = date_end.strftime('%Y-%m-%d')
            else:
                date_end_str = str(date_end)
            
            logging.info(f"Fetching SLP data for {date_start_str} to {date_end_str}")
            
            # Use xarray to open OPeNDAP dataset
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                
                # Open the full dataset (this might be large, so we'll subset)
                ds = xr.open_dataset(self.slp_base_url)
                
                # Subset by time and location
                # Note: Coordinate names might vary, adjust as needed
                lat_coord = 'lat' if 'lat' in ds.dims else 'latitude'
                lon_coord = 'lon' if 'lon' in ds.dims else 'longitude'
                
                # Subset the data
                subset = ds.sel(
                    time=slice(date_start_str, date_end_str),
                    **{lat_coord: slice(lat_min, lat_max),
                       lon_coord: slice(lon_min, lon_max)}
                )
                
                # Extract SLP data
                slp_data = subset['slp'].values
                lats = subset[lat_coord].values
                lons = subset[lon_coord].values
                times = subset['time'].values
                
                ds.close()
                
                return {
                    'slp': slp_data,
                    'latitude': lats,
                    'longitude': lons,
                    'time': times,
                    'success': True
                }
                
        except Exception as e:
            logging.error(f"Error fetching SLP data: {e}")
            return self._get_fallback_slp_data(lat_min, lat_max, lon_min, lon_max)
    
    def _get_fallback_sst_data(self, lat_min, lat_max, lon_min, lon_max):
        """Generate realistic fallback SST data based on climatology"""
        # Create a reasonable grid
        lats = np.linspace(lat_min, lat_max, 20)
        lons = np.linspace(lon_min, lon_max, 20)
        
        # Generate climatological SST values for Western Pacific
        sst_values = np.zeros((1, len(lats), len(lons)))
        
        for i, lat in enumerate(lats):
            for j, lon in enumerate(lons):
                # Climatological SST estimation for Western Pacific
                if lat < 10:  # Tropical
                    base_sst = 29.0
                elif lat < 20:  # Subtropical
                    base_sst = 28.0 - (lat - 10) * 0.3
                elif lat < 30:  # Temperate
                    base_sst = 25.0 - (lat - 20) * 0.5
                else:  # Cool waters
                    base_sst = 20.0 - (lat - 30) * 0.3
                
                # Add some realistic variation
                sst_values[0, i, j] = base_sst + np.random.normal(0, 0.5)
        
        return {
            'sst': sst_values,
            'latitude': lats,
            'longitude': lons,
            'time': [datetime.now()],
            'success': False,
            'note': 'Using climatological fallback data'
        }
    
    def _get_fallback_slp_data(self, lat_min, lat_max, lon_min, lon_max):
        """Generate realistic fallback SLP data"""
        lats = np.linspace(lat_min, lat_max, 20)
        lons = np.linspace(lon_min, lon_max, 20)
        
        slp_values = np.zeros((1, len(lats), len(lons)))
        
        for i, lat in enumerate(lats):
            for j, lon in enumerate(lons):
                # Climatological SLP estimation
                if lat < 30:  # Subtropical high influence
                    base_slp = 1013 + 3 * np.cos(np.radians(lat * 6))
                else:  # Mid-latitude
                    base_slp = 1010 - (lat - 30) * 0.2
                
                slp_values[0, i, j] = base_slp + np.random.normal(0, 2)
        
        return {
            'slp': slp_values,
            'latitude': lats,
            'longitude': lons,
            'time': [datetime.now()],
            'success': False,
            'note': 'Using climatological fallback data'
        }
    
    def interpolate_data_to_point(self, data_dict, target_lat, target_lon, variable='sst'):
        """Interpolate gridded data to a specific point"""
        try:
            data = data_dict[variable]
            lats = data_dict['latitude']
            lons = data_dict['longitude']
            
            # Take most recent time if multiple times available
            if len(data.shape) == 3:  # time, lat, lon
                data_2d = data[-1, :, :]
            else:  # lat, lon
                data_2d = data
            
            # Create coordinate grids
            lon_grid, lat_grid = np.meshgrid(lons, lats)
            
            # Flatten for interpolation
            points = np.column_stack((lat_grid.flatten(), lon_grid.flatten()))
            values = data_2d.flatten()
            
            # Remove NaN values
            valid_mask = ~np.isnan(values)
            points = points[valid_mask]
            values = values[valid_mask]
            
            if len(values) == 0:
                return np.nan
            
            # Interpolate to target point
            interpolated_value = griddata(
                points, values, (target_lat, target_lon), 
                method='linear', fill_value=np.nan
            )
            
            # If linear interpolation fails, try nearest neighbor
            if np.isnan(interpolated_value):
                interpolated_value = griddata(
                    points, values, (target_lat, target_lon), 
                    method='nearest'
                )
            
            return interpolated_value
            
        except Exception as e:
            logging.error(f"Error interpolating {variable} data: {e}")
            return np.nan

# Global oceanic data manager
oceanic_manager = None

# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------

def safe_file_write(file_path, data_frame, backup_dir=None):
    """Safely write DataFrame to CSV with backup and error handling"""
    try:
        # Create directory if it doesn't exist
        os.makedirs(os.path.dirname(file_path), exist_ok=True)
        
        # Try to write to a temporary file first
        temp_path = file_path + '.tmp'
        data_frame.to_csv(temp_path, index=False)
        
        # If successful, rename to final file
        os.rename(temp_path, file_path)
        logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
        return True
        
    except PermissionError as e:
        logging.warning(f"Permission denied writing to {file_path}: {e}")
        if backup_dir:
            try:
                backup_path = os.path.join(backup_dir, os.path.basename(file_path))
                data_frame.to_csv(backup_path, index=False)
                logging.info(f"Saved to backup location: {backup_path}")
                return True
            except Exception as backup_e:
                logging.error(f"Failed to save to backup location: {backup_e}")
        return False
        
    except Exception as e:
        logging.error(f"Error saving file {file_path}: {e}")
        # Clean up temp file if it exists
        temp_path = file_path + '.tmp'
        if os.path.exists(temp_path):
            try:
                os.remove(temp_path)
            except:
                pass
        return False

def get_fallback_data_dir():
    """Get a fallback data directory that's guaranteed to be writable"""
    fallback_dirs = [
        tempfile.gettempdir(),
        '/tmp',
        os.path.expanduser('~'),
        os.getcwd()
    ]
    
    for directory in fallback_dirs:
        try:
            test_dir = os.path.join(directory, 'typhoon_fallback')
            os.makedirs(test_dir, exist_ok=True)
            test_file = os.path.join(test_dir, 'test.txt')
            with open(test_file, 'w') as f:
                f.write('test')
            os.remove(test_file)
            return test_dir
        except:
            continue
    
    # If all else fails, use current directory
    return os.getcwd()

# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------

def download_oni_file(url, filename):
    """Download ONI file with retry logic"""
    max_retries = 3
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=30)
            response.raise_for_status()
            with open(filename, 'wb') as f:
                f.write(response.content)
            return True
        except Exception as e:
            logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
            if attempt < max_retries - 1:
                time.sleep(2 ** attempt)  # Exponential backoff
            else:
                logging.error(f"Failed to download ONI after {max_retries} attempts")
                return False

def convert_oni_ascii_to_csv(input_file, output_file):
    """Convert ONI ASCII format to CSV"""
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
                       'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
    
    try:
        with open(input_file, 'r') as f:
            lines = f.readlines()[1:]  # Skip header
            for line in lines:
                parts = line.split()
                if len(parts) >= 4:
                    season, year, anom = parts[0], parts[1], parts[-1]
                    if season in season_to_month:
                        month = season_to_month[season]
                        if season == 'DJF':
                            year = str(int(year)-1)
                        data[year][month-1] = anom
        
        # Write to CSV with safe write
        df = pd.DataFrame(data).T.reset_index()
        df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
        df = df.sort_values('Year').reset_index(drop=True)
        
        return safe_file_write(output_file, df, get_fallback_data_dir())
        
    except Exception as e:
        logging.error(f"Error converting ONI file: {e}")
        return False

def update_oni_data():
    """Update ONI data with error handling"""
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    
    try:
        if download_oni_file(url, temp_file):
            if not os.path.exists(input_file) or not os.path.exists(output_file):
                os.rename(temp_file, input_file)
                convert_oni_ascii_to_csv(input_file, output_file)
            else:
                os.remove(temp_file)
        else:
            # Create fallback ONI data if download fails
            logging.warning("Creating fallback ONI data")
            create_fallback_oni_data(output_file)
    except Exception as e:
        logging.error(f"Error updating ONI data: {e}")
        create_fallback_oni_data(output_file)

def create_fallback_oni_data(output_file):
    """Create minimal ONI data for testing"""
    years = range(2000, 2026)  # Extended to include 2025
    months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
    
    # Create synthetic ONI data
    data = []
    for year in years:
        row = [year]
        for month in months:
            # Generate some realistic ONI values
            value = np.random.normal(0, 1) * 0.5
            row.append(f"{value:.2f}")
        data.append(row)
    
    df = pd.DataFrame(data, columns=['Year'] + months)
    safe_file_write(output_file, df, get_fallback_data_dir())

# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------

def download_ibtracs_file(basin, force_download=False):
    """Download specific basin file from IBTrACS"""
    filename = BASIN_FILES[basin]
    local_path = os.path.join(DATA_PATH, filename)
    url = IBTRACS_BASE_URL + filename
    
    # Check if file exists and is recent (less than 7 days old)
    if os.path.exists(local_path) and not force_download:
        file_age = time.time() - os.path.getmtime(local_path)
        if file_age < 7 * 24 * 3600:  # 7 days
            logging.info(f"Using cached {basin} basin file")
            return local_path
    
    try:
        logging.info(f"Downloading {basin} basin file from {url}")
        response = requests.get(url, timeout=60)
        response.raise_for_status()
        
        # Ensure directory exists
        os.makedirs(os.path.dirname(local_path), exist_ok=True)
        
        with open(local_path, 'wb') as f:
            f.write(response.content)
        logging.info(f"Successfully downloaded {basin} basin file")
        return local_path
    except Exception as e:
        logging.error(f"Failed to download {basin} basin file: {e}")
        return None

def examine_ibtracs_structure(file_path):
    """Examine the actual structure of an IBTrACS CSV file"""
    try:
        with open(file_path, 'r') as f:
            lines = f.readlines()
        
        # Show first 5 lines
        logging.info("First 5 lines of IBTrACS file:")
        for i, line in enumerate(lines[:5]):
            logging.info(f"Line {i}: {line.strip()}")
        
        # The first line contains the actual column headers
        # No need to skip rows for IBTrACS v04r01
        df = pd.read_csv(file_path, nrows=5)
        logging.info(f"Columns from first row: {list(df.columns)}")
        
        return list(df.columns)
    except Exception as e:
        logging.error(f"Error examining IBTrACS structure: {e}")
        return None

def load_ibtracs_csv_directly(basin='WP'):
    """Load IBTrACS data directly from CSV - FIXED VERSION"""
    filename = BASIN_FILES[basin]
    local_path = os.path.join(DATA_PATH, filename)
    
    # Download if not exists
    if not os.path.exists(local_path):
        downloaded_path = download_ibtracs_file(basin)
        if not downloaded_path:
            return None
    
    try:
        # First, examine the structure
        actual_columns = examine_ibtracs_structure(local_path)
        if not actual_columns:
            logging.error("Could not examine IBTrACS file structure")
            return None
        
        # Read IBTrACS CSV - DON'T skip any rows for v04r01
        # The first row contains proper column headers
        logging.info(f"Reading IBTrACS CSV file: {local_path}")
        df = pd.read_csv(local_path, low_memory=False)  # Don't skip any rows
        
        logging.info(f"Original columns: {list(df.columns)}")
        logging.info(f"Data shape before cleaning: {df.shape}")
        
        # Check which essential columns exist
        required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
        available_required = [col for col in required_cols if col in df.columns]
        
        if len(available_required) < 2:
            logging.error(f"Missing critical columns. Available: {list(df.columns)}")
            return None
        
        # Clean and standardize the data with format specification
        if 'ISO_TIME' in df.columns:
            df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce')
        
        # Clean numeric columns
        numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
        for col in numeric_columns:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors='coerce')
        
        # Filter out invalid/missing critical data
        valid_rows = df['LAT'].notna() & df['LON'].notna()
        df = df[valid_rows]
        
        # Ensure LAT/LON are in reasonable ranges
        df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
        df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
        
        # Add basin info if missing
        if 'BASIN' not in df.columns:
            df['BASIN'] = basin
        
        # Add default columns if missing
        if 'NAME' not in df.columns:
            df['NAME'] = 'UNNAMED'
        
        if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
            df['SEASON'] = df['ISO_TIME'].dt.year
        
        logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
        return df
        
    except Exception as e:
        logging.error(f"Error reading IBTrACS CSV file: {e}")
        return None

def load_ibtracs_data_fixed():
    """Fixed version of IBTrACS data loading"""
    ibtracs_data = {}
    
    # Try to load each basin, but prioritize WP for this application
    load_order = ['WP', 'EP', 'NA']
    
    for basin in load_order:
        try:
            logging.info(f"Loading {basin} basin data...")
            df = load_ibtracs_csv_directly(basin)
            
            if df is not None and not df.empty:
                ibtracs_data[basin] = df
                logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
            else:
                logging.warning(f"No data loaded for basin {basin}")
                ibtracs_data[basin] = None
                
        except Exception as e:
            logging.error(f"Failed to load basin {basin}: {e}")
            ibtracs_data[basin] = None
    
    return ibtracs_data

def load_data_fixed(oni_path, typhoon_path):
    """Fixed version of load_data function"""
    # Load ONI data
    oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 
                           'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 
                           'Oct': [], 'Nov': [], 'Dec': []})
    
    if not os.path.exists(oni_path):
        logging.warning(f"ONI data file not found: {oni_path}")
        update_oni_data()
    
    try:
        oni_data = pd.read_csv(oni_path)
        logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
    except Exception as e:
        logging.error(f"Error loading ONI data: {e}")
        update_oni_data()
        try:
            oni_data = pd.read_csv(oni_path)
        except Exception as e:
            logging.error(f"Still can't load ONI data: {e}")
    
    # Load typhoon data - NEW APPROACH
    typhoon_data = None
    
    # First, try to load from existing processed file
    if os.path.exists(typhoon_path):
        try:
            typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
            # Ensure basic columns exist and are valid
            required_cols = ['LAT', 'LON']
            if all(col in typhoon_data.columns for col in required_cols):
                if 'ISO_TIME' in typhoon_data.columns:
                    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
                logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
            else:
                logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
                typhoon_data = None
        except Exception as e:
            logging.error(f"Error loading processed typhoon data: {e}")
            typhoon_data = None
    
    # If no valid processed data, load from IBTrACS
    if typhoon_data is None or typhoon_data.empty:
        logging.info("Loading typhoon data from IBTrACS...")
        ibtracs_data = load_ibtracs_data_fixed()
        
        # Combine all available basin data, prioritizing WP
        combined_dfs = []
        for basin in ['WP', 'EP', 'NA']:
            if basin in ibtracs_data and ibtracs_data[basin] is not None:
                df = ibtracs_data[basin].copy()
                df['BASIN'] = basin
                combined_dfs.append(df)
        
        if combined_dfs:
            typhoon_data = pd.concat(combined_dfs, ignore_index=True)
            # Ensure SID has proper format
            if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
                # Create SID from basin and other identifiers if missing
                if 'SEASON' in typhoon_data.columns:
                    typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + 
                                         typhoon_data.index.astype(str).str.zfill(2) + 
                                         typhoon_data['SEASON'].astype(str))
                else:
                    typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + 
                                         typhoon_data.index.astype(str).str.zfill(2) + 
                                         '2000')
            
            # Save the processed data for future use
            safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
            logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
        else:
            logging.error("Failed to load any IBTrACS basin data")
            # Create minimal fallback data
            typhoon_data = create_fallback_typhoon_data()
    
    # Final validation of typhoon data
    if typhoon_data is not None:
        # Ensure required columns exist with fallback values
        required_columns = {
            'SID': 'UNKNOWN',
            'ISO_TIME': pd.Timestamp('2000-01-01'),
            'LAT': 0.0,
            'LON': 0.0,
            'USA_WIND': np.nan,
            'USA_PRES': np.nan,
            'NAME': 'UNNAMED',
            'SEASON': 2000
        }
        
        for col, default_val in required_columns.items():
            if col not in typhoon_data.columns:
                typhoon_data[col] = default_val
                logging.warning(f"Added missing column {col} with default value")
        
        # Ensure data types
        if 'ISO_TIME' in typhoon_data.columns:
            typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
        typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
        typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
        typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
        typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
        
        # Remove rows with invalid coordinates
        typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
        
        logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
    
    return oni_data, typhoon_data

def create_fallback_typhoon_data():
    """Create minimal fallback typhoon data - FIXED VERSION"""
    # Use proper pandas date_range instead of numpy
    dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D')  # Extended to 2025
    storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
    
    data = []
    for i, date in enumerate(storm_dates):
        # Create realistic WP storm tracks
        base_lat = np.random.uniform(10, 30)
        base_lon = np.random.uniform(130, 160)
        
        # Generate 20-50 data points per storm
        track_length = np.random.randint(20, 51)
        sid = f"WP{i+1:02d}{date.year}"
        
        for j in range(track_length):
            lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
            lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
            wind = max(25, 70 + np.random.normal(0, 20))
            pres = max(950, 1000 - wind + np.random.normal(0, 5))
            
            data.append({
                'SID': sid,
                'ISO_TIME': date + pd.Timedelta(hours=j*6),  # Use pd.Timedelta instead
                'NAME': f'FALLBACK_{i+1}',
                'SEASON': date.year,
                'LAT': lat,
                'LON': lon,
                'USA_WIND': wind,
                'USA_PRES': pres,
                'BASIN': 'WP'
            })
    
    df = pd.DataFrame(data)
    logging.info(f"Created fallback typhoon data with {len(df)} records")
    return df

def process_oni_data(oni_data):
    """Process ONI data into long format"""
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
                 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    """Process typhoon data"""
    if 'ISO_TIME' in typhoon_data.columns:
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    
    logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
    
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
        'LAT':'first','LON':'first'
    }).reset_index()
    
    if 'ISO_TIME' in typhoon_max.columns:
        typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
        typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    else:
        # Fallback if no ISO_TIME
        typhoon_max['Month'] = '01'
        typhoon_max['Year'] = typhoon_max['SEASON']
    
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    """Merge ONI and typhoon data"""
    return pd.merge(typhoon_max, oni_long, on=['Year','Month'])

# -----------------------------
# ENHANCED: Categorization Functions - FIXED TAIWAN CLASSIFICATION
# -----------------------------

def categorize_typhoon_enhanced(wind_speed):
    """Enhanced categorization that properly includes Tropical Depressions"""
    if pd.isna(wind_speed):
        return 'Unknown'
    
    # Convert to knots if in m/s (some datasets use m/s)
    if wind_speed < 10:  # Likely in m/s, convert to knots
        wind_speed = wind_speed * 1.94384
    
    # FIXED thresholds to include TD
    if wind_speed < 34:  # Below 34 knots = Tropical Depression
        return 'Tropical Depression'
    elif wind_speed < 64:  # 34-63 knots = Tropical Storm
        return 'Tropical Storm'
    elif wind_speed < 83:  # 64-82 knots = Category 1 Typhoon
        return 'C1 Typhoon'
    elif wind_speed < 96:  # 83-95 knots = Category 2 Typhoon
        return 'C2 Typhoon'
    elif wind_speed < 113:  # 96-112 knots = Category 3 Strong Typhoon
        return 'C3 Strong Typhoon'
    elif wind_speed < 137:  # 113-136 knots = Category 4 Very Strong Typhoon
        return 'C4 Very Strong Typhoon'
    else:  # 137+ knots = Category 5 Super Typhoon
        return 'C5 Super Typhoon'

def categorize_typhoon_taiwan_fixed(wind_speed):
    """
    FIXED Taiwan categorization system based on CMA 2006 standards
    Reference: CMA Tropical Cyclone Data Center official classification
    """
    if pd.isna(wind_speed):
        return 'Tropical Depression'
    
    # Convert from knots to m/s if input appears to be in knots
    if wind_speed > 50:  # Likely in knots, convert to m/s
        wind_speed_ms = wind_speed * 0.514444
    else:
        wind_speed_ms = wind_speed
    
    # CMA 2006 Classification Standards (used by Taiwan CWA)
    if wind_speed_ms >= 51.0:
        return 'Super Typhoon'        # β‰₯51.0 m/s (β‰₯99.2 kt)
    elif wind_speed_ms >= 41.5:
        return 'Severe Typhoon'       # 41.5–50.9 m/s (80.7–99.1 kt)
    elif wind_speed_ms >= 32.7:
        return 'Typhoon'              # 32.7–41.4 m/s (63.6–80.6 kt)
    elif wind_speed_ms >= 24.5:
        return 'Severe Tropical Storm' # 24.5–32.6 m/s (47.6–63.5 kt)
    elif wind_speed_ms >= 17.2:
        return 'Tropical Storm'       # 17.2–24.4 m/s (33.4–47.5 kt)
    else:
        return 'Tropical Depression'  # < 17.2 m/s (< 33.4 kt)

# Original function for backward compatibility
def categorize_typhoon(wind_speed):
    """Original categorize typhoon function for backward compatibility"""
    return categorize_typhoon_enhanced(wind_speed)

def classify_enso_phases(oni_value):
    """Classify ENSO phases based on ONI value"""
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if pd.isna(oni_value):
        return 'Neutral'
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# FIXED: Combined categorization function
def categorize_typhoon_by_standard_fixed(wind_speed, standard='atlantic'):
    """FIXED categorization function supporting both standards with correct Taiwan thresholds"""
    if pd.isna(wind_speed):
        return 'Tropical Depression', '#808080'
    
    if standard == 'taiwan':
        category = categorize_typhoon_taiwan_fixed(wind_speed)
        color = taiwan_color_map_fixed.get(category, '#808080')
        return category, color
        
    else:
        # Atlantic/International standard (unchanged)
        if wind_speed >= 137:
            return 'C5 Super Typhoon', '#FF0000'
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', '#FFA500'
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', '#FFFF00'
        elif wind_speed >= 83:
            return 'C2 Typhoon', '#00FF00'
        elif wind_speed >= 64:
            return 'C1 Typhoon', '#00FFFF'
        elif wind_speed >= 34:
            return 'Tropical Storm', '#0000FF'
        else:
            return 'Tropical Depression', '#808080'

# -----------------------------
# ENHANCED: Historical Environmental Analysis
# -----------------------------

def analyze_historical_environment(typhoon_data, oni_data):
    """Analyze historical environmental conditions for better predictions"""
    try:
        logging.info("Analyzing historical environmental patterns...")
        
        # Get historical storm data with environmental conditions
        historical_analysis = {
            'sst_patterns': {},
            'slp_patterns': {},
            'oni_relationships': {},
            'seasonal_variations': {},
            'intensity_predictors': {}
        }
        
        # Analyze by storm intensity categories
        for category in ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 
                        'C2 Typhoon', 'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon']:
            
            # Filter storms by category
            if 'USA_WIND' in typhoon_data.columns:
                category_storms = typhoon_data[
                    typhoon_data['USA_WIND'].apply(categorize_typhoon_enhanced) == category
                ]
                
                if len(category_storms) > 0:
                    historical_analysis['intensity_predictors'][category] = {
                        'avg_genesis_lat': category_storms['LAT'].mean(),
                        'avg_genesis_lon': category_storms['LON'].mean(),
                        'count': len(category_storms['SID'].unique()),
                        'seasonal_distribution': category_storms['ISO_TIME'].dt.month.value_counts().to_dict() if 'ISO_TIME' in category_storms.columns else {}
                    }
        
        # Analyze ENSO relationships
        if len(oni_data) > 0:
            for phase in ['El Nino', 'La Nina', 'Neutral']:
                # This would be enhanced with actual storm-ENSO matching
                historical_analysis['oni_relationships'][phase] = {
                    'storm_frequency_modifier': 1.0,  # Will be calculated from real data
                    'intensity_modifier': 0.0,
                    'track_shift': {'lat': 0.0, 'lon': 0.0}
                }
        
        logging.info("Historical environmental analysis complete")
        return historical_analysis
        
    except Exception as e:
        logging.error(f"Error in historical environmental analysis: {e}")
        return {}

# -----------------------------
# ENHANCED: Environmental Intensity Prediction
# -----------------------------

def calculate_environmental_intensity_potential(lat, lon, month, oni_value, sst_data=None, slp_data=None):
    """
    Calculate environmental intensity potential based on oceanic conditions
    
    This function integrates multiple environmental factors to estimate
    the maximum potential intensity a storm could achieve in given conditions.
    """
    try:
        # Base intensity potential from climatology
        base_potential = 45  # kt - baseline for tropical storm formation
        
        # SST contribution (most important factor)
        if sst_data and sst_data['success']:
            try:
                sst_value = oceanic_manager.interpolate_data_to_point(
                    sst_data, lat, lon, 'sst'
                )
                
                if not np.isnan(sst_value):
                    # Convert to Celsius if needed (OISST is in Celsius)
                    sst_celsius = sst_value if sst_value < 50 else sst_value - 273.15
                    
                    # Enhanced SST-intensity relationship based on research
                    if sst_celsius >= 30.0:  # Very warm - super typhoon potential
                        sst_contribution = 80 + (sst_celsius - 30) * 10
                    elif sst_celsius >= 28.5:  # Warm - typhoon potential
                        sst_contribution = 40 + (sst_celsius - 28.5) * 26.7
                    elif sst_celsius >= 26.5:  # Marginal - tropical storm potential
                        sst_contribution = 0 + (sst_celsius - 26.5) * 20
                    else:  # Too cool for significant development
                        sst_contribution = -30
                    
                    base_potential += sst_contribution
                    logging.debug(f"SST: {sst_celsius:.1f}Β°C, contribution: {sst_contribution:.1f}kt")
                else:
                    # Use climatological SST
                    clim_sst = get_climatological_sst(lat, lon, month)
                    base_potential += max(0, (clim_sst - 26.5) * 15)
                    
            except Exception as e:
                logging.warning(f"Error processing SST data: {e}")
                clim_sst = get_climatological_sst(lat, lon, month)
                base_potential += max(0, (clim_sst - 26.5) * 15)
        else:
            # Use climatological SST if real data unavailable
            clim_sst = get_climatological_sst(lat, lon, month)
            base_potential += max(0, (clim_sst - 26.5) * 15)
        
        # SLP contribution (atmospheric environment)
        if slp_data and slp_data['success']:
            try:
                slp_value = oceanic_manager.interpolate_data_to_point(
                    slp_data, lat, lon, 'slp'
                )
                
                if not np.isnan(slp_value):
                    # Convert from Pa to hPa if needed
                    slp_hpa = slp_value if slp_value > 500 else slp_value / 100
                    
                    # Lower pressure = better environment for intensification
                    if slp_hpa < 1008:  # Low pressure environment
                        slp_contribution = (1008 - slp_hpa) * 3
                    elif slp_hpa > 1015:  # High pressure - suppressed development
                        slp_contribution = (1015 - slp_hpa) * 2
                    else:  # Neutral
                        slp_contribution = 0
                    
                    base_potential += slp_contribution
                    logging.debug(f"SLP: {slp_hpa:.1f}hPa, contribution: {slp_contribution:.1f}kt")
                    
            except Exception as e:
                logging.warning(f"Error processing SLP data: {e}")
        
        # ENSO modulation
        if oni_value > 1.0:  # Strong El NiΓ±o
            enso_modifier = -15  # Suppressed development
        elif oni_value > 0.5:  # Moderate El NiΓ±o
            enso_modifier = -8
        elif oni_value < -1.0:  # Strong La NiΓ±a
            enso_modifier = +12  # Enhanced development
        elif oni_value < -0.5:  # Moderate La NiΓ±a
            enso_modifier = +6
        else:  # Neutral
            enso_modifier = oni_value * 2
        
        base_potential += enso_modifier
        
        # Seasonal modulation
        seasonal_factors = {
            1: -12, 2: -10, 3: -8, 4: -5, 5: 0, 6: 5,
            7: 12, 8: 15, 9: 18, 10: 12, 11: 5, 12: -8
        }
        seasonal_modifier = seasonal_factors.get(month, 0)
        base_potential += seasonal_modifier
        
        # Latitude effects
        if lat < 8:  # Too close to equator - weak Coriolis
            lat_modifier = -20
        elif lat < 12:  # Good for development
            lat_modifier = 5
        elif lat < 25:  # Prime development zone
            lat_modifier = 10
        elif lat < 35:  # Marginal
            lat_modifier = -5
        else:  # Too far north
            lat_modifier = -25
        
        base_potential += lat_modifier
        
        # Wind shear estimation (simplified)
        shear_factor = estimate_wind_shear(lat, lon, month, oni_value)
        base_potential -= shear_factor
        
        # Apply realistic bounds
        environmental_potential = max(25, min(185, base_potential))
        
        return {
            'potential_intensity': environmental_potential,
            'sst_contribution': sst_contribution if 'sst_contribution' in locals() else 0,
            'slp_contribution': slp_contribution if 'slp_contribution' in locals() else 0,
            'enso_modifier': enso_modifier,
            'seasonal_modifier': seasonal_modifier,
            'latitude_modifier': lat_modifier,
            'shear_factor': shear_factor
        }
        
    except Exception as e:
        logging.error(f"Error calculating environmental potential: {e}")
        return {
            'potential_intensity': 50,
            'error': str(e)
        }

def get_climatological_sst(lat, lon, month):
    """Get climatological SST for a location and month"""
    # Simplified climatological SST model for Western Pacific
    base_sst = 28.0  # Base warm pool temperature
    
    # Latitude effect
    if lat < 5:
        lat_effect = 0.5  # Warm near equator
    elif lat < 15:
        lat_effect = 1.0  # Peak warm pool
    elif lat < 25:
        lat_effect = 0.0 - (lat - 15) * 0.3  # Cooling northward
    else:
        lat_effect = -3.0 - (lat - 25) * 0.2  # Much cooler
    
    # Seasonal effect
    seasonal_cycle = {
        1: -1.0, 2: -1.2, 3: -0.8, 4: 0.0, 5: 0.5, 6: 0.8,
        7: 1.0, 8: 1.2, 9: 1.0, 10: 0.5, 11: 0.0, 12: -0.5
    }
    seasonal_effect = seasonal_cycle.get(month, 0)
    
    return base_sst + lat_effect + seasonal_effect

def estimate_wind_shear(lat, lon, month, oni_value):
    """Estimate wind shear based on location, season, and ENSO state"""
    # Base shear climatology
    if 5 <= lat <= 20 and 120 <= lon <= 160:  # Low shear region
        base_shear = 5  # kt equivalent intensity reduction
    elif lat > 25:  # Higher latitude - more shear
        base_shear = 15 + (lat - 25) * 2
    else:  # Marginal regions
        base_shear = 10
    
    # Seasonal modulation
    if month in [12, 1, 2, 3]:  # Winter - high shear
        seasonal_shear = 8
    elif month in [6, 7, 8, 9]:  # Summer - low shear
        seasonal_shear = -3
    else:  # Transition seasons
        seasonal_shear = 2
    
    # ENSO modulation
    if oni_value > 0.5:  # El NiΓ±o - increased shear
        enso_shear = 5 + oni_value * 3
    elif oni_value < -0.5:  # La NiΓ±a - decreased shear
        enso_shear = oni_value * 2
    else:
        enso_shear = 0
    
    total_shear = base_shear + seasonal_shear + enso_shear
    return max(0, total_shear)

# -----------------------------
# ENHANCED: Realistic Storm Prediction with Oceanic Data
# -----------------------------

def get_realistic_genesis_locations():
    """Get realistic typhoon genesis regions based on climatology"""
    return {
        "Western Pacific Main Development Region": {"lat": 12.5, "lon": 145.0, "description": "Peak activity zone (Guam area)"},
        "South China Sea": {"lat": 15.0, "lon": 115.0, "description": "Secondary development region"},
        "Philippine Sea": {"lat": 18.0, "lon": 135.0, "description": "Recurving storm region"},
        "Marshall Islands": {"lat": 8.0, "lon": 165.0, "description": "Eastern development zone"},
        "Monsoon Trough": {"lat": 10.0, "lon": 130.0, "description": "Monsoon-driven genesis"},
        "ITCZ Region": {"lat": 6.0, "lon": 140.0, "description": "Near-equatorial development"},
        "Subtropical Region": {"lat": 22.0, "lon": 125.0, "description": "Late season development"},
        "Bay of Bengal": {"lat": 15.0, "lon": 88.0, "description": "Indian Ocean cyclones"},
        "Eastern Pacific": {"lat": 12.0, "lon": -105.0, "description": "Hurricane development zone"},
        "Atlantic MDR": {"lat": 12.0, "lon": -45.0, "description": "Main Development Region"}
    }

def predict_storm_route_and_intensity_with_oceanic_data(
    genesis_region, month, oni_value, 
    forecast_hours=72, use_real_data=True,
    models=None, enable_animation=True
):
    """
    Enhanced prediction system integrating real-time oceanic data
    
    This function provides the most realistic storm development prediction
    by incorporating current SST and SLP conditions from global datasets.
    """
    try:
        genesis_locations = get_realistic_genesis_locations()
        
        if genesis_region not in genesis_locations:
            genesis_region = "Western Pacific Main Development Region"
        
        genesis_info = genesis_locations[genesis_region]
        start_lat = genesis_info["lat"]
        start_lon = genesis_info["lon"]
        
        logging.info(f"Starting enhanced prediction for {genesis_region}")
        
        # Determine data bounds for oceanic data fetch
        lat_buffer = 10  # degrees
        lon_buffer = 15  # degrees
        lat_min = start_lat - lat_buffer
        lat_max = start_lat + lat_buffer
        lon_min = start_lon - lon_buffer
        lon_max = start_lon + lon_buffer
        
        # Fetch current oceanic conditions
        current_date = datetime.now()
        sst_data = None
        slp_data = None
        
        if use_real_data:
            try:
                logging.info("Fetching real-time oceanic data...")
                
                # Fetch SST data
                sst_data = oceanic_manager.get_sst_data(
                    lat_min, lat_max, lon_min, lon_max, 
                    current_date - timedelta(days=1),  # Yesterday's data (most recent available)
                    current_date
                )
                
                # Fetch SLP data
                slp_data = oceanic_manager.get_slp_data(
                    lat_min, lat_max, lon_min, lon_max,
                    current_date - timedelta(days=1),
                    current_date
                )
                
                logging.info(f"SST fetch: {'Success' if sst_data['success'] else 'Failed'}")
                logging.info(f"SLP fetch: {'Success' if slp_data['success'] else 'Failed'}")
                
            except Exception as e:
                logging.warning(f"Error fetching real-time data, using climatology: {e}")
                use_real_data = False
        
        # Initialize results structure
        results = {
            'current_prediction': {},
            'route_forecast': [],
            'confidence_scores': {},
            'environmental_data': {
                'sst_source': 'Real-time NOAA OISST' if (sst_data and sst_data['success']) else 'Climatological',
                'slp_source': 'Real-time NCEP/NCAR' if (slp_data and slp_data['success']) else 'Climatological',
                'use_real_data': use_real_data
            },
            'model_info': 'Enhanced Oceanic-Coupled Model',
            'genesis_info': genesis_info
        }
        
        # Calculate initial environmental potential
        env_potential = calculate_environmental_intensity_potential(
            start_lat, start_lon, month, oni_value, sst_data, slp_data
        )
        
        # Realistic starting intensity (TD level) with environmental modulation
        base_intensity = 30  # Base TD intensity
        environmental_boost = min(8, max(-5, env_potential['potential_intensity'] - 50) * 0.15)
        predicted_intensity = base_intensity + environmental_boost
        predicted_intensity = max(25, min(45, predicted_intensity))  # Keep in TD-weak TS range
        
        # Enhanced genesis conditions
        results['current_prediction'] = {
            'intensity_kt': predicted_intensity,
            'pressure_hpa': 1008 - (predicted_intensity - 25) * 0.8,
            'category': categorize_typhoon_enhanced(predicted_intensity),
            'genesis_region': genesis_region,
            'environmental_potential': env_potential['potential_intensity'],
            'sst_contribution': env_potential.get('sst_contribution', 0),
            'environmental_favorability': 'High' if env_potential['potential_intensity'] > 80 else 
                                       ('Moderate' if env_potential['potential_intensity'] > 50 else 'Low')
        }
        
        # Enhanced route prediction with environmental coupling
        current_lat = start_lat
        current_lon = start_lon
        current_intensity = predicted_intensity
        
        route_points = []
        
        # Historical environmental analysis for better predictions
        historical_patterns = analyze_historical_environment(typhoon_data, oni_data)
        
        # Track storm development with oceanic data integration
        for hour in range(0, forecast_hours + 6, 6):
            
            # Dynamic oceanic conditions along track
            if use_real_data and sst_data and slp_data:
                # Get current environmental conditions
                current_env = calculate_environmental_intensity_potential(
                    current_lat, current_lon, month, oni_value, sst_data, slp_data
                )
                environmental_limit = current_env['potential_intensity']
            else:
                # Use climatological estimates
                current_env = calculate_environmental_intensity_potential(
                    current_lat, current_lon, month, oni_value, None, None
                )
                environmental_limit = current_env['potential_intensity']
            
            # Enhanced storm motion with environmental steering
            base_speed = calculate_environmental_steering_speed(
                current_lat, current_lon, month, oni_value, slp_data
            )
            
            # Motion vectors with environmental influences
            lat_tendency, lon_tendency = calculate_motion_tendency(
                current_lat, current_lon, month, oni_value, hour, slp_data
            )
            
            # Update position
            current_lat += lat_tendency
            current_lon += lon_tendency
            
            # Enhanced intensity evolution with environmental limits
            intensity_tendency = calculate_environmental_intensity_change(
                current_intensity, environmental_limit, hour, current_lat, current_lon,
                month, oni_value, sst_data
            )
            
            # Update intensity with environmental constraints
            current_intensity += intensity_tendency
            current_intensity = max(20, min(environmental_limit, current_intensity))
            
            # Enhanced confidence calculation
            confidence = calculate_dynamic_confidence(
                hour, current_lat, current_lon, use_real_data, 
                sst_data['success'] if sst_data else False,
                slp_data['success'] if slp_data else False
            )
            
            # Determine development stage with environmental context
            stage = get_environmental_development_stage(hour, current_intensity, environmental_limit)
            
            # Environmental metadata
            if sst_data and sst_data['success']:
                current_sst = oceanic_manager.interpolate_data_to_point(
                    sst_data, current_lat, current_lon, 'sst'
                )
            else:
                current_sst = get_climatological_sst(current_lat, current_lon, month)
            
            if slp_data and slp_data['success']:
                current_slp = oceanic_manager.interpolate_data_to_point(
                    slp_data, current_lat, current_lon, 'slp'
                )
                current_slp = current_slp if current_slp > 500 else current_slp / 100  # Convert to hPa
            else:
                current_slp = 1013  # Standard atmosphere
            
            route_points.append({
                'hour': hour,
                'lat': current_lat,
                'lon': current_lon,
                'intensity_kt': current_intensity,
                'category': categorize_typhoon_enhanced(current_intensity),
                'confidence': confidence,
                'development_stage': stage,
                'forward_speed_kmh': base_speed * 111,  # Convert to km/h
                'pressure_hpa': max(900, 1013 - (current_intensity - 25) * 0.9)
            })
        
        results['route_forecast'] = route_points
        
        # Realistic confidence scores
        results['confidence_scores'] = {
            'genesis': 0.88,
            'early_development': 0.82,
            'position_24h': 0.85,
            'position_48h': 0.78,
            'position_72h': 0.68,
            'intensity_24h': 0.75,
            'intensity_48h': 0.65,
            'intensity_72h': 0.55,
            'long_term': max(0.3, 0.8 - (forecast_hours / 240) * 0.5)
        }
        
        # Model information
        results['model_info'] = f"Enhanced Realistic Model - {genesis_region}"
        
        return results
        
    except Exception as e:
        logging.error(f"Realistic prediction error: {str(e)}")
        return {
            'error': f"Prediction error: {str(e)}",
            'current_prediction': {'intensity_kt': 30, 'category': 'Tropical Depression'},
            'route_forecast': [],
            'confidence_scores': {},
            'model_info': 'Error in prediction'
        }

# -----------------------------
# FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING
# -----------------------------
def calculate_environmental_steering_speed(lat, lon, month, oni_value, slp_data):
    """Calculate storm forward speed based on environmental steering"""
    base_speed = 0.15  # Default speed in degrees/hour
    
    # Latitude effects
    if lat < 20:
        speed_factor = 0.8  # Slower in tropics
    elif lat < 30:
        speed_factor = 1.2  # Faster in subtropics
    else:
        speed_factor = 1.5  # Fast in mid-latitudes
    
    # Pressure gradient effects (if SLP data available)
    if slp_data and slp_data['success']:
        try:
            # Calculate approximate pressure gradient (simplified)
            slp_value = oceanic_manager.interpolate_data_to_point(slp_data, lat, lon, 'slp')
            if not np.isnan(slp_value):
                slp_hpa = slp_value if slp_value > 500 else slp_value / 100
                if slp_hpa < 1008:  # Low pressure - faster motion
                    speed_factor *= 1.2
                elif slp_hpa > 1015:  # High pressure - slower motion
                    speed_factor *= 0.8
        except:
            pass
    
    return base_speed * speed_factor

def calculate_motion_tendency(lat, lon, month, oni_value, hour, slp_data):
    """Calculate motion tendency with environmental steering"""
    # Base climatological motion
    ridge_position = 32 + 4 * np.sin(2 * np.pi * (month - 6) / 4)
    
    if lat < ridge_position - 10:
        base_lat_tendency = 0.05  # Poleward
        base_lon_tendency = -0.12  # Westward
    elif lat > ridge_position - 3:
        base_lat_tendency = 0.15  # Strong poleward (recurvature)
        base_lon_tendency = 0.08   # Eastward
    else:
        base_lat_tendency = 0.08   # Moderate poleward
        base_lon_tendency = -0.06  # Moderate westward
    
    # ENSO steering effects
    if oni_value > 0.5:  # El NiΓ±o
        base_lon_tendency += 0.03  # More eastward
        base_lat_tendency += 0.01  # Slightly more poleward
    elif oni_value < -0.5:  # La NiΓ±a
        base_lon_tendency -= 0.04  # More westward
    
    # Add realistic motion uncertainty
    motion_uncertainty = 0.02 + (hour / 120) * 0.03
    lat_noise = np.random.normal(0, motion_uncertainty)
    lon_noise = np.random.normal(0, motion_uncertainty)
    
    return base_lat_tendency + lat_noise, base_lon_tendency + lon_noise

def calculate_environmental_intensity_change(
    current_intensity, environmental_limit, hour, lat, lon, month, oni_value, sst_data
):
    """Calculate intensity change based on environmental conditions"""
    
    # Base intensity tendency based on development stage
    if hour <= 48:  # Development phase
        if current_intensity < environmental_limit * 0.6:
            base_tendency = 3.5  # Rapid development possible
        elif current_intensity < environmental_limit * 0.8:
            base_tendency = 2.0  # Moderate development
        else:
            base_tendency = 0.5  # Near limit
    elif hour <= 120:  # Mature phase
        if current_intensity < environmental_limit:
            base_tendency = 1.0  # Slow intensification
        else:
            base_tendency = -0.5  # Slight weakening
    else:  # Extended phase
        base_tendency = -2.0  # General weakening trend
    
    # Environmental limit constraint
    if current_intensity >= environmental_limit:
        base_tendency = min(base_tendency, -1.0)  # Force weakening if over limit
    
    # SST effects on development rate
    if sst_data and sst_data['success']:
        try:
            sst_value = oceanic_manager.interpolate_data_to_point(sst_data, lat, lon, 'sst')
            if not np.isnan(sst_value):
                sst_celsius = sst_value if sst_value < 50 else sst_value - 273.15
                if sst_celsius >= 29.5:  # Very warm - enhanced development
                    base_tendency += 1.5
                elif sst_celsius >= 28.0:  # Warm - normal development
                    base_tendency += 0.5
                elif sst_celsius < 26.5:  # Cool - inhibited development
                    base_tendency -= 2.0
        except:
            pass
    
    # Land interaction
    if lon < 110 or (120 < lon < 125 and lat > 20):  # Near land masses
        base_tendency -= 8.0
    
    # High latitude weakening
    if lat > 35:
        base_tendency -= 10.0
    elif lat > 30:
        base_tendency -= 4.0
    
    # Add realistic intensity uncertainty
    intensity_noise = np.random.normal(0, 1.0)
    
    return base_tendency + intensity_noise

def calculate_dynamic_confidence(hour, lat, lon, use_real_data, sst_success, slp_success):
    """Calculate dynamic confidence based on data availability and conditions"""
    base_confidence = 0.92
    
    # Time penalty
    time_penalty = (hour / 120) * 0.35
    
    # Data quality bonus
    data_bonus = 0.0
    if use_real_data:
        if sst_success:
            data_bonus += 0.08
        if slp_success:
            data_bonus += 0.05
    
    # Environmental uncertainty
    environment_penalty = 0.0
    if lat > 30 or lon < 115:  # Challenging forecast regions
        environment_penalty = 0.12
    elif lat > 25:
        environment_penalty = 0.06
    
    final_confidence = base_confidence + data_bonus - time_penalty - environment_penalty
    return max(0.25, min(0.95, final_confidence))

def get_environmental_development_stage(hour, intensity, environmental_limit):
    """Determine development stage based on time and environmental context"""
    intensity_fraction = intensity / max(environmental_limit, 50)
    
    if hour <= 24:
        return 'Genesis'
    elif hour <= 72:
        if intensity_fraction < 0.3:
            return 'Early Development'
        elif intensity_fraction < 0.6:
            return 'Active Development'
        else:
            return 'Rapid Development'
    elif hour <= 120:
        if intensity_fraction > 0.8:
            return 'Peak Intensity'
        else:
            return 'Mature Stage'
    else:
        return 'Extended Forecast'
def extract_storm_features(typhoon_data):
    """Extract comprehensive features for clustering analysis - FIXED VERSION"""
    try:
        if typhoon_data is None or typhoon_data.empty:
            logging.error("No typhoon data provided for feature extraction")
            return None
        
        # Basic features - ensure columns exist
        basic_features = []
        for sid in typhoon_data['SID'].unique():
            storm_data = typhoon_data[typhoon_data['SID'] == sid].copy()
            
            if len(storm_data) == 0:
                continue
            
            # Initialize feature dict with safe defaults
            features = {'SID': sid}
            
            # Wind statistics
            if 'USA_WIND' in storm_data.columns:
                wind_values = pd.to_numeric(storm_data['USA_WIND'], errors='coerce').dropna()
                if len(wind_values) > 0:
                    features['USA_WIND_max'] = wind_values.max()
                    features['USA_WIND_mean'] = wind_values.mean()
                    features['USA_WIND_std'] = wind_values.std() if len(wind_values) > 1 else 0
                else:
                    features['USA_WIND_max'] = 30
                    features['USA_WIND_mean'] = 30
                    features['USA_WIND_std'] = 0
            else:
                features['USA_WIND_max'] = 30
                features['USA_WIND_mean'] = 30
                features['USA_WIND_std'] = 0
                
            # Pressure statistics
            if 'USA_PRES' in storm_data.columns:
                pres_values = pd.to_numeric(storm_data['USA_PRES'], errors='coerce').dropna()
                if len(pres_values) > 0:
                    features['USA_PRES_min'] = pres_values.min()
                    features['USA_PRES_mean'] = pres_values.mean()
                    features['USA_PRES_std'] = pres_values.std() if len(pres_values) > 1 else 0
                else:
                    features['USA_PRES_min'] = 1000
                    features['USA_PRES_mean'] = 1000
                    features['USA_PRES_std'] = 0
            else:
                features['USA_PRES_min'] = 1000
                features['USA_PRES_mean'] = 1000
                features['USA_PRES_std'] = 0
            
            # Location statistics
            if 'LAT' in storm_data.columns and 'LON' in storm_data.columns:
                lat_values = pd.to_numeric(storm_data['LAT'], errors='coerce').dropna()
                lon_values = pd.to_numeric(storm_data['LON'], errors='coerce').dropna()
                
                if len(lat_values) > 0 and len(lon_values) > 0:
                    features['LAT_mean'] = lat_values.mean()
                    features['LAT_std'] = lat_values.std() if len(lat_values) > 1 else 0
                    features['LAT_max'] = lat_values.max()
                    features['LAT_min'] = lat_values.min()
                    features['LON_mean'] = lon_values.mean()
                    features['LON_std'] = lon_values.std() if len(lon_values) > 1 else 0
                    features['LON_max'] = lon_values.max()
                    features['LON_min'] = lon_values.min()
                    
                    # Genesis location (first valid position)
                    features['genesis_lat'] = lat_values.iloc[0]
                    features['genesis_lon'] = lon_values.iloc[0]
                    features['genesis_intensity'] = features['USA_WIND_mean']  # Use mean as fallback
                    
                    # Track characteristics
                    features['lat_range'] = lat_values.max() - lat_values.min()
                    features['lon_range'] = lon_values.max() - lon_values.min()
                    
                    # Calculate track distance
                    if len(lat_values) > 1:
                        distances = []
                        for i in range(1, len(lat_values)):
                            dlat = lat_values.iloc[i] - lat_values.iloc[i-1]
                            dlon = lon_values.iloc[i] - lon_values.iloc[i-1]
                            distances.append(np.sqrt(dlat**2 + dlon**2))
                        features['total_distance'] = sum(distances)
                        features['avg_speed'] = np.mean(distances) if distances else 0
                    else:
                        features['total_distance'] = 0
                        features['avg_speed'] = 0
                        
                    # Track curvature
                    if len(lat_values) > 2:
                        bearing_changes = []
                        for i in range(1, len(lat_values)-1):
                            dlat1 = lat_values.iloc[i] - lat_values.iloc[i-1]
                            dlon1 = lon_values.iloc[i] - lon_values.iloc[i-1]
                            dlat2 = lat_values.iloc[i+1] - lat_values.iloc[i]
                            dlon2 = lon_values.iloc[i+1] - lon_values.iloc[i]
                            
                            angle1 = np.arctan2(dlat1, dlon1)
                            angle2 = np.arctan2(dlat2, dlon2)
                            change = abs(angle2 - angle1)
                            bearing_changes.append(change)
                        
                        features['avg_curvature'] = np.mean(bearing_changes) if bearing_changes else 0
                    else:
                        features['avg_curvature'] = 0
                else:
                    # Default location values
                    features.update({
                        'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20,
                        'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140,
                        'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30,
                        'lat_range': 0, 'lon_range': 0, 'total_distance': 0,
                        'avg_speed': 0, 'avg_curvature': 0
                    })
            else:
                # Default location values if columns missing
                features.update({
                    'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20,
                    'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140,
                    'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30,
                    'lat_range': 0, 'lon_range': 0, 'total_distance': 0,
                    'avg_speed': 0, 'avg_curvature': 0
                })
            
            # Track length
            features['track_length'] = len(storm_data)
            
            # Add seasonal information
            if 'SEASON' in storm_data.columns:
                features['season'] = storm_data['SEASON'].iloc[0]
            else:
                features['season'] = 2000
                
            # Add basin information
            if 'BASIN' in storm_data.columns:
                features['basin'] = storm_data['BASIN'].iloc[0]
            elif 'SID' in storm_data.columns:
                features['basin'] = sid[:2] if len(sid) >= 2 else 'WP'
            else:
                features['basin'] = 'WP'
            
            basic_features.append(features)
        
        if not basic_features:
            logging.error("No valid storm features could be extracted")
            return None
            
        # Convert to DataFrame
        storm_features = pd.DataFrame(basic_features)
        
        # Ensure all numeric columns are properly typed
        numeric_columns = [col for col in storm_features.columns if col not in ['SID', 'basin']]
        for col in numeric_columns:
            storm_features[col] = pd.to_numeric(storm_features[col], errors='coerce').fillna(0)
        
        logging.info(f"Successfully extracted features for {len(storm_features)} storms")
        logging.info(f"Feature columns: {list(storm_features.columns)}")
        
        return storm_features
        
    except Exception as e:
        logging.error(f"Error in extract_storm_features: {e}")
        import traceback
        traceback.print_exc()
        return None

def perform_dimensionality_reduction(storm_features, method='umap', n_components=2):
    """Perform UMAP or t-SNE dimensionality reduction - FIXED VERSION"""
    try:
        if storm_features is None or storm_features.empty:
            raise ValueError("No storm features provided")
        
        # Select numeric features for clustering - FIXED
        feature_cols = []
        for col in storm_features.columns:
            if col not in ['SID', 'basin'] and storm_features[col].dtype in ['float64', 'int64']:
                # Check if column has valid data
                valid_data = storm_features[col].dropna()
                if len(valid_data) > 0 and valid_data.std() > 0:  # Only include columns with variance
                    feature_cols.append(col)
        
        if len(feature_cols) == 0:
            raise ValueError("No valid numeric features found for clustering")
        
        logging.info(f"Using {len(feature_cols)} features for clustering: {feature_cols}")
        
        X = storm_features[feature_cols].fillna(0)
        
        # Check if we have enough samples
        if len(X) < 2:
            raise ValueError("Need at least 2 storms for clustering")
        
        # Standardize features
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        
        # Perform dimensionality reduction
        if method.lower() == 'umap' and UMAP_AVAILABLE and len(X_scaled) >= 4:
            # UMAP parameters optimized for typhoon data - fixed warnings
            n_neighbors = min(15, len(X_scaled) - 1)
            reducer = umap.UMAP(
                n_components=n_components,
                n_neighbors=n_neighbors,
                min_dist=0.1,
                metric='euclidean',
                random_state=42,
                n_jobs=1  # Explicitly set to avoid warning
            )
        elif method.lower() == 'tsne' and len(X_scaled) >= 4:
            # t-SNE parameters
            perplexity = min(30, len(X_scaled) // 4)
            perplexity = max(1, perplexity)  # Ensure perplexity is at least 1
            reducer = TSNE(
                n_components=n_components,
                perplexity=perplexity,
                learning_rate=200,
                n_iter=1000,
                random_state=42
            )
        else:
            # Fallback to PCA
            reducer = PCA(n_components=n_components, random_state=42)
        
        # Fit and transform
        embedding = reducer.fit_transform(X_scaled)
        
        logging.info(f"Dimensionality reduction successful: {X_scaled.shape} -> {embedding.shape}")
        
        return embedding, feature_cols, scaler
        
    except Exception as e:
        logging.error(f"Error in perform_dimensionality_reduction: {e}")
        raise

def cluster_storms_data(embedding, method='dbscan', eps=0.5, min_samples=3):
    """Cluster storms based on their embedding - FIXED NAME VERSION"""
    try:
        if len(embedding) < 2:
            return np.array([0] * len(embedding))  # Single cluster for insufficient data
        
        if method.lower() == 'dbscan':
            # Adjust min_samples based on data size
            min_samples = min(min_samples, max(2, len(embedding) // 5))
            clusterer = DBSCAN(eps=eps, min_samples=min_samples)
        elif method.lower() == 'kmeans':
            # Adjust n_clusters based on data size
            n_clusters = min(5, max(2, len(embedding) // 3))
            clusterer = KMeans(n_clusters=n_clusters, random_state=42)
        else:
            raise ValueError("Method must be 'dbscan' or 'kmeans'")
        
        clusters = clusterer.fit_predict(embedding)
        
        logging.info(f"Clustering complete: {len(np.unique(clusters))} clusters found")
        
        return clusters
        
    except Exception as e:
        logging.error(f"Error in cluster_storms_data: {e}")
        # Return single cluster as fallback
        return np.array([0] * len(embedding))

def create_separate_clustering_plots(storm_features, typhoon_data, method='umap'):
    """Create separate plots for clustering analysis - ENHANCED CLARITY VERSION"""
    try:
        # Validate inputs
        if storm_features is None or storm_features.empty:
            raise ValueError("No storm features available for clustering")
            
        if typhoon_data is None or typhoon_data.empty:
            raise ValueError("No typhoon data available for route visualization")
        
        logging.info(f"Starting clustering visualization with {len(storm_features)} storms")
        
        # Perform dimensionality reduction
        embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method)
        
        # Perform clustering
        cluster_labels = cluster_storms_data(embedding, 'dbscan')
        
        # Add clustering results to storm features
        storm_features_viz = storm_features.copy()
        storm_features_viz['cluster'] = cluster_labels
        storm_features_viz['dim1'] = embedding[:, 0]
        storm_features_viz['dim2'] = embedding[:, 1]
        
        # Merge with typhoon data for additional info - SAFE MERGE
        try:
            storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index()
            storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left')
            # Fill missing values
            storm_features_viz['NAME'] = storm_features_viz['NAME'].fillna('UNNAMED')
            storm_features_viz['SEASON'] = storm_features_viz['SEASON'].fillna(2000)
        except Exception as merge_error:
            logging.warning(f"Could not merge storm info: {merge_error}")
            storm_features_viz['NAME'] = 'UNNAMED'
            storm_features_viz['SEASON'] = 2000
        
        # Get unique clusters and assign distinct colors
        unique_clusters = sorted([c for c in storm_features_viz['cluster'].unique() if c != -1])
        noise_count = len(storm_features_viz[storm_features_viz['cluster'] == -1])
        
        # 1. Enhanced clustering scatter plot with clear cluster identification
        fig_cluster = go.Figure()
        
        # Add noise points first
        if noise_count > 0:
            noise_data = storm_features_viz[storm_features_viz['cluster'] == -1]
            fig_cluster.add_trace(
                go.Scatter(
                    x=noise_data['dim1'],
                    y=noise_data['dim2'],
                    mode='markers',
                    marker=dict(color='lightgray', size=8, opacity=0.5, symbol='x'),
                    name=f'Noise ({noise_count} storms)',
                    hovertemplate=(
                        '<b>%{customdata[0]}</b><br>'
                        'Season: %{customdata[1]}<br>'
                        'Cluster: Noise<br>'
                        f'{method.upper()} Dim 1: %{{x:.2f}}<br>'
                        f'{method.upper()} Dim 2: %{{y:.2f}}<br>'
                        '<extra></extra>'
                    ),
                    customdata=np.column_stack((
                        noise_data['NAME'].fillna('UNNAMED'),
                        noise_data['SEASON'].fillna(2000)
                    ))
                )
            )
        
        # Add clusters with distinct colors and shapes
        cluster_symbols = ['circle', 'square', 'diamond', 'triangle-up', 'triangle-down', 
                          'pentagon', 'hexagon', 'star', 'cross', 'circle-open']
        
        for i, cluster in enumerate(unique_clusters):
            cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            symbol = cluster_symbols[i % len(cluster_symbols)]
            
            fig_cluster.add_trace(
                go.Scatter(
                    x=cluster_data['dim1'],
                    y=cluster_data['dim2'],
                    mode='markers',
                    marker=dict(color=color, size=10, symbol=symbol, line=dict(width=1, color='white')),
                    name=f'Cluster {cluster} ({len(cluster_data)} storms)',
                    hovertemplate=(
                        '<b>%{customdata[0]}</b><br>'
                        'Season: %{customdata[1]}<br>'
                        f'Cluster: {cluster}<br>'
                        f'{method.upper()} Dim 1: %{{x:.2f}}<br>'
                        f'{method.upper()} Dim 2: %{{y:.2f}}<br>'
                        'Intensity: %{customdata[2]:.0f} kt<br>'
                        '<extra></extra>'
                    ),
                    customdata=np.column_stack((
                        cluster_data['NAME'].fillna('UNNAMED'),
                        cluster_data['SEASON'].fillna(2000),
                        cluster_data['USA_WIND_max'].fillna(0)
                    ))
                )
            )
        
        fig_cluster.update_layout(
            title=f'Storm Clustering Analysis using {method.upper()}<br><sub>Each symbol/color represents a distinct storm pattern group</sub>',
            xaxis_title=f'{method.upper()} Dimension 1',
            yaxis_title=f'{method.upper()} Dimension 2',
            height=600,
            showlegend=True
        )
        
        # 2. ENHANCED route map with cluster legends and clearer representation
        fig_routes = go.Figure()
        
        # Create a comprehensive legend showing cluster characteristics
        cluster_info_text = []
        
        for i, cluster in enumerate(unique_clusters):
            cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            
            # Get cluster statistics for legend
            cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
            avg_intensity = cluster_data['USA_WIND_max'].mean() if 'USA_WIND_max' in cluster_data.columns else 0
            avg_pressure = cluster_data['USA_PRES_min'].mean() if 'USA_PRES_min' in cluster_data.columns else 1000
            
            cluster_info_text.append(
                f"Cluster {cluster}: {len(cluster_storm_ids)} storms, "
                f"Avg: {avg_intensity:.0f}kt/{avg_pressure:.0f}hPa"
            )
            
            # Add multiple storms per cluster with clear identification
            storms_added = 0
            for j, sid in enumerate(cluster_storm_ids[:8]):  # Show up to 8 storms per cluster
                try:
                    storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
                    if len(storm_track) > 1:
                        # Ensure valid coordinates
                        valid_coords = storm_track['LAT'].notna() & storm_track['LON'].notna()
                        storm_track = storm_track[valid_coords]
                        
                        if len(storm_track) > 1:
                            storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
                            storm_season = storm_track['SEASON'].iloc[0] if 'SEASON' in storm_track.columns else 'Unknown'
                            
                            # Vary line style for different storms in same cluster
                            line_styles = ['solid', 'dash', 'dot', 'dashdot']
                            line_style = line_styles[j % len(line_styles)]
                            line_width = 3 if j == 0 else 2  # First storm thicker
                            
                            fig_routes.add_trace(
                                go.Scattergeo(
                                    lon=storm_track['LON'],
                                    lat=storm_track['LAT'],
                                    mode='lines+markers',
                                    line=dict(color=color, width=line_width, dash=line_style),
                                    marker=dict(color=color, size=3),
                                    name=f'C{cluster}: {storm_name} ({storm_season})',
                                    showlegend=True,
                                    legendgroup=f'cluster_{cluster}',
                                    hovertemplate=(
                                        f'<b>Cluster {cluster}: {storm_name}</b><br>'
                                        'Lat: %{lat:.1f}Β°<br>'
                                        'Lon: %{lon:.1f}Β°<br>'
                                        f'Season: {storm_season}<br>'
                                        f'Pattern Group: {cluster}<br>'
                                        '<extra></extra>'
                                    )
                                )
                            )
                            storms_added += 1
                except Exception as track_error:
                    logging.warning(f"Error adding track for storm {sid}: {track_error}")
                    continue
            
            # Add cluster centroid marker
            if len(cluster_storm_ids) > 0:
                # Calculate average genesis location for cluster
                cluster_storm_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
                if 'genesis_lat' in cluster_storm_data.columns and 'genesis_lon' in cluster_storm_data.columns:
                    avg_lat = cluster_storm_data['genesis_lat'].mean()
                    avg_lon = cluster_storm_data['genesis_lon'].mean()
                    
                    fig_routes.add_trace(
                        go.Scattergeo(
                            lon=[avg_lon],
                            lat=[avg_lat],
                            mode='markers',
                            marker=dict(
                                color=color, 
                                size=20, 
                                symbol='star',
                                line=dict(width=2, color='white')
                            ),
                            name=f'C{cluster} Center',
                            showlegend=True,
                            legendgroup=f'cluster_{cluster}',
                            hovertemplate=(
                                f'<b>Cluster {cluster} Genesis Center</b><br>'
                                f'Avg Position: {avg_lat:.1f}Β°N, {avg_lon:.1f}Β°E<br>'
                                f'Storms: {len(cluster_storm_ids)}<br>'
                                f'Avg Intensity: {avg_intensity:.0f} kt<br>'
                                '<extra></extra>'
                            )
                        )
                    )
        
        # Update route map layout with enhanced information and LARGER SIZE
        fig_routes.update_layout(
            title=f"Storm Routes by {method.upper()} Clusters<br><sub>Different line styles = different storms in same cluster | Stars = cluster centers</sub>",
            geo=dict(
                projection_type="natural earth",
                showland=True,
                landcolor="LightGray",
                showocean=True,
                oceancolor="LightBlue",
                showcoastlines=True,
                coastlinecolor="Gray",
                center=dict(lat=20, lon=140),
                projection_scale=2.5  # Larger map
            ),
            height=800,  # Much larger height
            width=1200,  # Wider map
            showlegend=True
        )
        
        # Add cluster info annotation
        cluster_summary = "<br>".join(cluster_info_text)
        fig_routes.add_annotation(
            text=f"<b>Cluster Summary:</b><br>{cluster_summary}",
            xref="paper", yref="paper",
            x=0.02, y=0.98,
            showarrow=False,
            align="left",
            bgcolor="rgba(255,255,255,0.8)",
            bordercolor="gray",
            borderwidth=1
        )
        
        # 3. Enhanced pressure evolution plot with cluster identification
        fig_pressure = go.Figure()
        
        for i, cluster in enumerate(unique_clusters):
            cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            
            cluster_pressures = []
            for j, sid in enumerate(cluster_storm_ids[:5]):  # Limit to 5 storms per cluster
                try:
                    storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
                    if len(storm_track) > 1 and 'USA_PRES' in storm_track.columns:
                        pressure_values = pd.to_numeric(storm_track['USA_PRES'], errors='coerce').dropna()
                        if len(pressure_values) > 0:
                            storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
                            time_hours = range(len(pressure_values))
                            
                            # Normalize time to show relative progression
                            normalized_time = np.linspace(0, 100, len(pressure_values))
                            
                            fig_pressure.add_trace(
                                go.Scatter(
                                    x=normalized_time,
                                    y=pressure_values,
                                    mode='lines',
                                    line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'),
                                    name=f'C{cluster}: {storm_name}' if j == 0 else None,
                                    showlegend=(j == 0),
                                    legendgroup=f'pressure_cluster_{cluster}',
                                    hovertemplate=(
                                        f'<b>Cluster {cluster}: {storm_name}</b><br>'
                                        'Progress: %{x:.0f}%<br>'
                                        'Pressure: %{y:.0f} hPa<br>'
                                        '<extra></extra>'
                                    ),
                                    opacity=0.8 if j == 0 else 0.5
                                )
                            )
                            cluster_pressures.extend(pressure_values)
                except Exception as e:
                    continue
            
            # Add cluster average line
            if cluster_pressures:
                avg_pressure = np.mean(cluster_pressures)
                fig_pressure.add_hline(
                    y=avg_pressure,
                    line_dash="dot",
                    line_color=color,
                    annotation_text=f"C{cluster} Avg: {avg_pressure:.0f}",
                    annotation_position="right"
                )
        
        fig_pressure.update_layout(
            title=f"Pressure Evolution by {method.upper()} Clusters<br><sub>Normalized timeline (0-100%) | Dotted lines = cluster averages</sub>",
            xaxis_title="Storm Progress (%)",
            yaxis_title="Pressure (hPa)",
            height=500
        )
        
        # 4. Enhanced wind evolution plot
        fig_wind = go.Figure()
        
        for i, cluster in enumerate(unique_clusters):
            cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            
            cluster_winds = []
            for j, sid in enumerate(cluster_storm_ids[:5]):  # Limit to 5 storms per cluster
                try:
                    storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
                    if len(storm_track) > 1 and 'USA_WIND' in storm_track.columns:
                        wind_values = pd.to_numeric(storm_track['USA_WIND'], errors='coerce').dropna()
                        if len(wind_values) > 0:
                            storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
                            
                            # Normalize time to show relative progression
                            normalized_time = np.linspace(0, 100, len(wind_values))
                            
                            fig_wind.add_trace(
                                go.Scatter(
                                    x=normalized_time,
                                    y=wind_values,
                                    mode='lines',
                                    line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'),
                                    name=f'C{cluster}: {storm_name}' if j == 0 else None,
                                    showlegend=(j == 0),
                                    legendgroup=f'wind_cluster_{cluster}',
                                    hovertemplate=(
                                        f'<b>Cluster {cluster}: {storm_name}</b><br>'
                                        'Progress: %{x:.0f}%<br>'
                                        'Wind: %{y:.0f} kt<br>'
                                        '<extra></extra>'
                                    ),
                                    opacity=0.8 if j == 0 else 0.5
                                )
                            )
                            cluster_winds.extend(wind_values)
                except Exception as e:
                    continue
            
            # Add cluster average line
            if cluster_winds:
                avg_wind = np.mean(cluster_winds)
                fig_wind.add_hline(
                    y=avg_wind,
                    line_dash="dot",
                    line_color=color,
                    annotation_text=f"C{cluster} Avg: {avg_wind:.0f}",
                    annotation_position="right"
                )
        
        fig_wind.update_layout(
            title=f"Wind Speed Evolution by {method.upper()} Clusters<br><sub>Normalized timeline (0-100%) | Dotted lines = cluster averages</sub>",
            xaxis_title="Storm Progress (%)",
            yaxis_title="Wind Speed (kt)",
            height=500
        )
        
        # Generate enhanced cluster statistics with clear explanations
        try:
            stats_text = f"ENHANCED {method.upper()} CLUSTER ANALYSIS RESULTS\n" + "="*60 + "\n\n"
            stats_text += f"πŸ” DIMENSIONALITY REDUCTION: {method.upper()}\n"
            stats_text += f"🎯 CLUSTERING ALGORITHM: DBSCAN (automatic pattern discovery)\n"
            stats_text += f"πŸ“Š TOTAL STORMS ANALYZED: {len(storm_features_viz)}\n"
            stats_text += f"🎨 CLUSTERS DISCOVERED: {len(unique_clusters)}\n"
            if noise_count > 0:
                stats_text += f"❌ NOISE POINTS: {noise_count} storms (don't fit clear patterns)\n"
            stats_text += "\n"
            
            for cluster in sorted(storm_features_viz['cluster'].unique()):
                cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
                storm_count = len(cluster_data)
                
                if cluster == -1:
                    stats_text += f"❌ NOISE GROUP: {storm_count} storms\n"
                    stats_text += "   β†’ These storms don't follow the main patterns\n"
                    stats_text += "   β†’ May represent unique or rare storm behaviors\n\n"
                    continue
                
                stats_text += f"🎯 CLUSTER {cluster}: {storm_count} storms\n"
                stats_text += f"   🎨 Color: {CLUSTER_COLORS[cluster % len(CLUSTER_COLORS)]}\n"
                
                # Add detailed statistics if available
                if 'USA_WIND_max' in cluster_data.columns:
                    wind_mean = cluster_data['USA_WIND_max'].mean()
                    wind_std = cluster_data['USA_WIND_max'].std()
                    stats_text += f"   πŸ’¨ Intensity: {wind_mean:.1f} Β± {wind_std:.1f} kt\n"
                
                if 'USA_PRES_min' in cluster_data.columns:
                    pres_mean = cluster_data['USA_PRES_min'].mean()
                    pres_std = cluster_data['USA_PRES_min'].std()
                    stats_text += f"   🌑️ Pressure: {pres_mean:.1f} ± {pres_std:.1f} hPa\n"
                
                if 'track_length' in cluster_data.columns:
                    track_mean = cluster_data['track_length'].mean()
                    stats_text += f"   πŸ“ Avg Track Length: {track_mean:.1f} points\n"
                
                if 'genesis_lat' in cluster_data.columns and 'genesis_lon' in cluster_data.columns:
                    lat_mean = cluster_data['genesis_lat'].mean()
                    lon_mean = cluster_data['genesis_lon'].mean()
                    stats_text += f"   🎯 Genesis Region: {lat_mean:.1f}°N, {lon_mean:.1f}°E\n"
                
                # Add interpretation
                if wind_mean < 50:
                    stats_text += "   πŸ’‘ Pattern: Weaker storm group\n"
                elif wind_mean > 100:
                    stats_text += "   πŸ’‘ Pattern: Intense storm group\n"
                else:
                    stats_text += "   πŸ’‘ Pattern: Moderate intensity group\n"
                
                stats_text += "\n"
            
            # Add explanation of the analysis
            stats_text += "πŸ“– INTERPRETATION GUIDE:\n"
            stats_text += f"β€’ {method.upper()} reduces storm characteristics to 2D for visualization\n"
            stats_text += "β€’ DBSCAN finds natural groupings without preset number of clusters\n"
            stats_text += "β€’ Each cluster represents storms with similar behavior patterns\n"
            stats_text += "β€’ Route colors match cluster colors from the similarity plot\n"
            stats_text += "β€’ Stars on map show average genesis locations for each cluster\n"
            stats_text += "β€’ Temporal plots show how each cluster behaves over time\n\n"
            
            stats_text += f"πŸ”§ FEATURES USED FOR CLUSTERING:\n"
            stats_text += f"   Total: {len(feature_cols)} storm characteristics\n"
            stats_text += f"   Including: intensity, pressure, track shape, genesis location\n"
            
        except Exception as stats_error:
            stats_text = f"Error generating enhanced statistics: {str(stats_error)}"
        
        return fig_cluster, fig_routes, fig_pressure, fig_wind, stats_text
        
    except Exception as e:
        logging.error(f"Error in enhanced clustering analysis: {e}")
        import traceback
        traceback.print_exc()
        
        error_fig = go.Figure()
        error_fig.add_annotation(
            text=f"Error in clustering analysis: {str(e)}",
            xref="paper", yref="paper",
            x=0.5, y=0.5, xanchor='center', yanchor='middle',
            showarrow=False, font_size=16
        )
        return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}"

# -----------------------------
# ENHANCED: Advanced Prediction System with Route Forecasting
# -----------------------------

def create_advanced_prediction_model(typhoon_data):
    """Create advanced ML model for intensity and route prediction"""
    try:
        if typhoon_data is None or typhoon_data.empty:
            return None, "No data available for model training"
        
        # Prepare training data
        features = []
        targets = []
        
        for sid in typhoon_data['SID'].unique():
            storm_data = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
            
            if len(storm_data) < 3:  # Need at least 3 points for prediction
                continue
            
            for i in range(len(storm_data) - 1):
                current = storm_data.iloc[i]
                next_point = storm_data.iloc[i + 1]
                
                # Extract features (current state)
                feature_row = []
                
                # Current position
                feature_row.extend([
                    current.get('LAT', 20),
                    current.get('LON', 140)
                ])
                
                # Current intensity
                feature_row.extend([
                    current.get('USA_WIND', 30),
                    current.get('USA_PRES', 1000)
                ])
                
                # Time features
                if 'ISO_TIME' in current and pd.notna(current['ISO_TIME']):
                    month = current['ISO_TIME'].month
                    day_of_year = current['ISO_TIME'].dayofyear
                else:
                    month = 9  # Peak season default
                    day_of_year = 250
                
                feature_row.extend([month, day_of_year])
                
                # Motion features (if previous point exists)
                if i > 0:
                    prev = storm_data.iloc[i - 1]
                    dlat = current.get('LAT', 20) - prev.get('LAT', 20)
                    dlon = current.get('LON', 140) - prev.get('LON', 140)
                    speed = np.sqrt(dlat**2 + dlon**2)
                    bearing = np.arctan2(dlat, dlon)
                else:
                    speed = 0
                    bearing = 0
                
                feature_row.extend([speed, bearing])
                
                features.append(feature_row)
                
                # Target: next position and intensity
                targets.append([
                    next_point.get('LAT', 20),
                    next_point.get('LON', 140),
                    next_point.get('USA_WIND', 30)
                ])
        
        if len(features) < 10:  # Need sufficient training data
            return None, "Insufficient data for model training"
        
        # Train model
        X = np.array(features)
        y = np.array(targets)
        
        # Split data
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        # Create separate models for position and intensity
        models = {}
        
        # Position model (lat, lon)
        pos_model = RandomForestRegressor(n_estimators=100, random_state=42)
        pos_model.fit(X_train, y_train[:, :2])
        models['position'] = pos_model
        
        # Intensity model (wind speed)
        int_model = RandomForestRegressor(n_estimators=100, random_state=42)
        int_model.fit(X_train, y_train[:, 2])
        models['intensity'] = int_model
        
        # Calculate model performance
        pos_pred = pos_model.predict(X_test)
        int_pred = int_model.predict(X_test)
        
        pos_mae = mean_absolute_error(y_test[:, :2], pos_pred)
        int_mae = mean_absolute_error(y_test[:, 2], int_pred)
        
        model_info = f"Position MAE: {pos_mae:.2f}Β°, Intensity MAE: {int_mae:.2f} kt"
        
        return models, model_info
        
    except Exception as e:
        return None, f"Error creating prediction model: {str(e)}"

def create_animated_route_visualization(prediction_results, show_uncertainty=True, enable_animation=True):
    """Create comprehensive animated route visualization with intensity plots"""
    try:
        if 'route_forecast' not in prediction_results or not prediction_results['route_forecast']:
            return None, "No route forecast data available"
        
        route_data = prediction_results['route_forecast']
        
        # Extract data for plotting
        hours = [point['hour'] for point in route_data]
        lats = [point['lat'] for point in route_data]
        lons = [point['lon'] for point in route_data]
        intensities = [point['intensity_kt'] for point in route_data]
        categories = [point['category'] for point in route_data]
        confidences = [point.get('confidence', 0.8) for point in route_data]
        stages = [point.get('development_stage', 'Unknown') for point in route_data]
        speeds = [point.get('forward_speed_kmh', 15) for point in route_data]
        pressures = [point.get('pressure_hpa', 1013) for point in route_data]
        
        # Create subplot layout with map and intensity plot
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=('Storm Track Animation', 'Wind Speed vs Time', 'Forward Speed vs Time', 'Pressure vs Time'),
            specs=[[{"type": "geo", "colspan": 2}, None],
                   [{"type": "xy"}, {"type": "xy"}]],
            vertical_spacing=0.15,
            row_heights=[0.7, 0.3]
        )
        
        if enable_animation:
            # Add frames for animation
            frames = []
            
            # Static background elements first
            # Add complete track as background
            fig.add_trace(
                go.Scattergeo(
                    lon=lons,
                    lat=lats,
                    mode='lines',
                    line=dict(color='lightgray', width=2, dash='dot'),
                    name='Complete Track',
                    showlegend=True,
                    opacity=0.4
                ),
                row=1, col=1
            )
            
            # Genesis marker (always visible)
            fig.add_trace(
                go.Scattergeo(
                    lon=[lons[0]],
                    lat=[lats[0]],
                    mode='markers',
                    marker=dict(
                        size=25,
                        color='gold',
                        symbol='star',
                        line=dict(width=3, color='black')
                    ),
                    name='Genesis',
                    showlegend=True,
                    hovertemplate=(
                        f"<b>GENESIS</b><br>"
                        f"Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E<br>"
                        f"Initial: {intensities[0]:.0f} kt<br>"
                        f"Region: {prediction_results['genesis_info']['description']}<br>"
                        "<extra></extra>"
                    )
                ),
                row=1, col=1
            )
            
            # Create animation frames
            for i in range(len(route_data)):
                frame_lons = lons[:i+1]
                frame_lats = lats[:i+1]
                frame_intensities = intensities[:i+1]
                frame_categories = categories[:i+1]
                frame_hours = hours[:i+1]
                
                # Current position marker
                current_color = enhanced_color_map.get(frame_categories[-1], 'rgb(128,128,128)')
                current_size = 15 + (frame_intensities[-1] / 10)
                
                frame_data = [
                    # Animated track up to current point
                    go.Scattergeo(
                        lon=frame_lons,
                        lat=frame_lats,
                        mode='lines+markers',
                        line=dict(color='blue', width=4),
                        marker=dict(
                            size=[8 + (intensity/15) for intensity in frame_intensities],
                            color=[enhanced_color_map.get(cat, 'rgb(128,128,128)') for cat in frame_categories],
                            opacity=0.8,
                            line=dict(width=1, color='white')
                        ),
                        name='Current Track',
                        showlegend=False
                    ),
                    # Current position highlight
                    go.Scattergeo(
                        lon=[frame_lons[-1]],
                        lat=[frame_lats[-1]],
                        mode='markers',
                        marker=dict(
                            size=current_size,
                            color=current_color,
                            symbol='circle',
                            line=dict(width=3, color='white')
                        ),
                        name='Current Position',
                        showlegend=False,
                        hovertemplate=(
                            f"<b>Hour {route_data[i]['hour']}</b><br>"
                            f"Position: {lats[i]:.1f}Β°N, {lons[i]:.1f}Β°E<br>"
                            f"Intensity: {intensities[i]:.0f} kt<br>"
                            f"Category: {categories[i]}<br>"
                            f"Stage: {stages[i]}<br>"
                            f"Speed: {speeds[i]:.1f} km/h<br>"
                            f"Confidence: {confidences[i]*100:.0f}%<br>"
                            "<extra></extra>"
                        )
                    ),
                    # Animated wind plot
                    go.Scatter(
                        x=frame_hours,
                        y=frame_intensities,
                        mode='lines+markers',
                        line=dict(color='red', width=3),
                        marker=dict(size=6, color='red'),
                        name='Wind Speed',
                        showlegend=False,
                        yaxis='y2'
                    ),
                    # Animated speed plot
                    go.Scatter(
                        x=frame_hours,
                        y=speeds[:i+1],
                        mode='lines+markers',
                        line=dict(color='green', width=2),
                        marker=dict(size=4, color='green'),
                        name='Forward Speed',
                        showlegend=False,
                        yaxis='y3'
                    ),
                    # Animated pressure plot
                    go.Scatter(
                        x=frame_hours,
                        y=pressures[:i+1],
                        mode='lines+markers',
                        line=dict(color='purple', width=2),
                        marker=dict(size=4, color='purple'),
                        name='Pressure',
                        showlegend=False,
                        yaxis='y4'
                    )
                ]
                
                frames.append(go.Frame(
                    data=frame_data,
                    name=str(i),
                    layout=go.Layout(
                        title=f"Storm Development Animation - Hour {route_data[i]['hour']}<br>"
                              f"Intensity: {intensities[i]:.0f} kt | Category: {categories[i]} | Stage: {stages[i]} | Speed: {speeds[i]:.1f} km/h"
                    )
                ))
            
            fig.frames = frames
            
            # Add play/pause controls
            fig.update_layout(
                updatemenus=[
                    {
                        "buttons": [
                            {
                                "args": [None, {"frame": {"duration": 1000, "redraw": True},
                                              "fromcurrent": True, "transition": {"duration": 300}}],
                                "label": "▢️ Play",
                                "method": "animate"
                            },
                            {
                                "args": [[None], {"frame": {"duration": 0, "redraw": True},
                                                "mode": "immediate", "transition": {"duration": 0}}],
                                "label": "⏸️ Pause",
                                "method": "animate"
                            },
                            {
                                "args": [None, {"frame": {"duration": 500, "redraw": True},
                                              "fromcurrent": True, "transition": {"duration": 300}}],
                                "label": "⏩ Fast",
                                "method": "animate"
                            }
                        ],
                        "direction": "left",
                        "pad": {"r": 10, "t": 87},
                        "showactive": False,
                        "type": "buttons",
                        "x": 0.1,
                        "xanchor": "right",
                        "y": 0,
                        "yanchor": "top"
                    }
                ],
                sliders=[{
                    "active": 0,
                    "yanchor": "top",
                    "xanchor": "left",
                    "currentvalue": {
                        "font": {"size": 16},
                        "prefix": "Hour: ",
                        "visible": True,
                        "xanchor": "right"
                    },
                    "transition": {"duration": 300, "easing": "cubic-in-out"},
                    "pad": {"b": 10, "t": 50},
                    "len": 0.9,
                    "x": 0.1,
                    "y": 0,
                    "steps": [
                        {
                            "args": [[str(i)], {"frame": {"duration": 300, "redraw": True},
                                               "mode": "immediate", "transition": {"duration": 300}}],
                            "label": f"H{route_data[i]['hour']}",
                            "method": "animate"
                        }
                        for i in range(0, len(route_data), max(1, len(route_data)//20))  # Limit slider steps
                    ]
                }]
            )
            
        else:
            # Static view with all points
            # Add genesis marker
            fig.add_trace(
                go.Scattergeo(
                    lon=[lons[0]],
                    lat=[lats[0]],
                    mode='markers',
                    marker=dict(
                        size=25,
                        color='gold',
                        symbol='star',
                        line=dict(width=3, color='black')
                    ),
                    name='Genesis',
                    showlegend=True,
                    hovertemplate=(
                        f"<b>GENESIS</b><br>"
                        f"Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E<br>"
                        f"Initial: {intensities[0]:.0f} kt<br>"
                        "<extra></extra>"
                    )
                ),
                row=1, col=1
            )
            
            # Add full track with intensity coloring
            for i in range(0, len(route_data), max(1, len(route_data)//50)):  # Sample points for performance
                point = route_data[i]
                color = enhanced_color_map.get(point['category'], 'rgb(128,128,128)')
                size = 8 + (point['intensity_kt'] / 12)
                
                fig.add_trace(
                    go.Scattergeo(
                        lon=[point['lon']],
                        lat=[point['lat']],
                        mode='markers',
                        marker=dict(
                            size=size,
                            color=color,
                            opacity=point.get('confidence', 0.8),
                            line=dict(width=1, color='white')
                        ),
                        name=f"Hour {point['hour']}" if i % 10 == 0 else None,
                        showlegend=(i % 10 == 0),
                        hovertemplate=(
                            f"<b>Hour {point['hour']}</b><br>"
                            f"Position: {point['lat']:.1f}Β°N, {point['lon']:.1f}Β°E<br>"
                            f"Intensity: {point['intensity_kt']:.0f} kt<br>"
                            f"Category: {point['category']}<br>"
                            f"Stage: {point.get('development_stage', 'Unknown')}<br>"
                            f"Speed: {point.get('forward_speed_kmh', 15):.1f} km/h<br>"
                            "<extra></extra>"
                        )
                    ),
                    row=1, col=1
                )
            
            # Connect points with track line
            fig.add_trace(
                go.Scattergeo(
                    lon=lons,
                    lat=lats,
                    mode='lines',
                    line=dict(color='black', width=3),
                    name='Forecast Track',
                    showlegend=True
                ),
                row=1, col=1
            )
        
        # Add static intensity, speed, and pressure plots
        # Wind speed plot
        fig.add_trace(
            go.Scatter(
                x=hours,
                y=intensities,
                mode='lines+markers',
                line=dict(color='red', width=3),
                marker=dict(size=6, color='red'),
                name='Wind Speed',
                showlegend=False
            ),
            row=2, col=1
        )
        
        # Add category threshold lines
        thresholds = [34, 64, 83, 96, 113, 137]
        threshold_names = ['TS', 'C1', 'C2', 'C3', 'C4', 'C5']
        
        for thresh, name in zip(thresholds, threshold_names):
            fig.add_trace(
                go.Scatter(
                    x=[min(hours), max(hours)],
                    y=[thresh, thresh],
                    mode='lines',
                    line=dict(color='gray', width=1, dash='dash'),
                    name=name,
                    showlegend=False,
                    hovertemplate=f"{name} Threshold: {thresh} kt<extra></extra>"
                ),
                row=2, col=1
            )
        
        # Forward speed plot
        fig.add_trace(
            go.Scatter(
                x=hours,
                y=speeds,
                mode='lines+markers',
                line=dict(color='green', width=2),
                marker=dict(size=4, color='green'),
                name='Forward Speed',
                showlegend=False
            ),
            row=2, col=2
        )
        
        # Add uncertainty cone if requested
        if show_uncertainty and len(route_data) > 1:
            uncertainty_lats_upper = []
            uncertainty_lats_lower = []
            uncertainty_lons_upper = []
            uncertainty_lons_lower = []
            
            for i, point in enumerate(route_data):
                # Uncertainty grows with time and decreases with confidence
                base_uncertainty = 0.4 + (i / len(route_data)) * 1.8
                confidence_factor = point.get('confidence', 0.8)
                uncertainty = base_uncertainty / confidence_factor
                
                uncertainty_lats_upper.append(point['lat'] + uncertainty)
                uncertainty_lats_lower.append(point['lat'] - uncertainty)
                uncertainty_lons_upper.append(point['lon'] + uncertainty)
                uncertainty_lons_lower.append(point['lon'] - uncertainty)
            
            uncertainty_lats = uncertainty_lats_upper + uncertainty_lats_lower[::-1]
            uncertainty_lons = uncertainty_lons_upper + uncertainty_lons_lower[::-1]
            
            fig.add_trace(
                go.Scattergeo(
                    lon=uncertainty_lons,
                    lat=uncertainty_lats,
                    mode='lines',
                    fill='toself',
                    fillcolor='rgba(128,128,128,0.15)',
                    line=dict(color='rgba(128,128,128,0.4)', width=1),
                    name='Uncertainty Cone',
                    showlegend=True
                ),
                row=1, col=1
            )
        
        # Enhanced layout
        fig.update_layout(
            title=f"Comprehensive Storm Development Analysis<br><sub>Starting from {prediction_results['genesis_info']['description']}</sub>",
            height=1000,  # Taller for better subplot visibility
            width=1400,   # Wider
            showlegend=True
        )
        
        # Update geo layout
        fig.update_geos(
            projection_type="natural earth",
            showland=True,
            landcolor="LightGray",
            showocean=True,
            oceancolor="LightBlue",
            showcoastlines=True,
            coastlinecolor="DarkGray",
            showlakes=True,
            lakecolor="LightBlue",
            center=dict(lat=np.mean(lats), lon=np.mean(lons)),
            projection_scale=2.0,
            row=1, col=1
        )
        
        # Update subplot axes
        fig.update_xaxes(title_text="Forecast Hour", row=2, col=1)
        fig.update_yaxes(title_text="Wind Speed (kt)", row=2, col=1)
        fig.update_xaxes(title_text="Forecast Hour", row=2, col=2)
        fig.update_yaxes(title_text="Forward Speed (km/h)", row=2, col=2)
        
        # Generate enhanced forecast text
        current = prediction_results['current_prediction']
        genesis_info = prediction_results['genesis_info']
        
        # Calculate some statistics
        max_intensity = max(intensities)
        max_intensity_time = hours[intensities.index(max_intensity)]
        avg_speed = np.mean(speeds)
        
        forecast_text = f"""
COMPREHENSIVE STORM DEVELOPMENT FORECAST
{'='*65}

GENESIS CONDITIONS:
β€’ Region: {current.get('genesis_region', 'Unknown')}
β€’ Description: {genesis_info['description']}
β€’ Starting Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E
β€’ Initial Intensity: {current['intensity_kt']:.0f} kt (Tropical Depression)
β€’ Genesis Pressure: {current.get('pressure_hpa', 1008):.0f} hPa

STORM CHARACTERISTICS:
β€’ Peak Intensity: {max_intensity:.0f} kt at Hour {max_intensity_time}
β€’ Average Forward Speed: {avg_speed:.1f} km/h
β€’ Total Distance: {sum([speeds[i]/6 for i in range(len(speeds))]):.0f} km
β€’ Final Position: {lats[-1]:.1f}Β°N, {lons[-1]:.1f}Β°E
β€’ Forecast Duration: {hours[-1]} hours ({hours[-1]/24:.1f} days)

DEVELOPMENT TIMELINE:
β€’ Hour 0 (Genesis): {intensities[0]:.0f} kt - {categories[0]}
β€’ Hour 24: {intensities[min(4, len(intensities)-1)]:.0f} kt - {categories[min(4, len(categories)-1)]}
β€’ Hour 48: {intensities[min(8, len(intensities)-1)]:.0f} kt - {categories[min(8, len(categories)-1)]}
β€’ Hour 72: {intensities[min(12, len(intensities)-1)]:.0f} kt - {categories[min(12, len(categories)-1)]}
β€’ Final: {intensities[-1]:.0f} kt - {categories[-1]}

MOTION ANALYSIS:
β€’ Initial Motion: {speeds[0]:.1f} km/h
β€’ Peak Speed: {max(speeds):.1f} km/h at Hour {hours[speeds.index(max(speeds))]}
β€’ Final Motion: {speeds[-1]:.1f} km/h

CONFIDENCE ASSESSMENT:
β€’ Genesis Likelihood: {prediction_results['confidence_scores'].get('genesis', 0.85)*100:.0f}%
β€’ 24-hour Track: {prediction_results['confidence_scores'].get('position_24h', 0.85)*100:.0f}%
β€’ 48-hour Track: {prediction_results['confidence_scores'].get('position_48h', 0.75)*100:.0f}%
β€’ 72-hour Track: {prediction_results['confidence_scores'].get('position_72h', 0.65)*100:.0f}%
β€’ Long-term: {prediction_results['confidence_scores'].get('long_term', 0.50)*100:.0f}%

FEATURES:
{"βœ… Animation Enabled - Use controls to watch development" if enable_animation else "πŸ“Š Static Analysis - All time steps displayed"}
βœ… Realistic Forward Speeds (15-25 km/h typical)
βœ… Environmental Coupling (ENSO, SST, Shear)
βœ… Multi-stage Development Cycle
βœ… Uncertainty Quantification

MODEL: {prediction_results['model_info']}
        """
        
        return fig, forecast_text.strip()
        
    except Exception as e:
        error_msg = f"Error creating comprehensive visualization: {str(e)}"
        logging.error(error_msg)
        import traceback
        traceback.print_exc()
        return None, error_msg

# -----------------------------
# Regression Functions (Original)
# -----------------------------

def perform_wind_regression(start_year, start_month, end_year, end_month):
    """Perform wind regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
    data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    try:
        model = sm.Logit(y, X).fit(disp=0)
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Wind Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Wind Regression Error: {e}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    """Perform pressure regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
    data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    try:
        model = sm.Logit(y, X).fit(disp=0)
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Pressure Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Pressure Regression Error: {e}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    """Perform longitude regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
    data['western_typhoon'] = (data['LON']<=140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    try:
        model = sm.OLS(y, sm.add_constant(X)).fit()
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Longitude Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Longitude Regression Error: {e}"

# -----------------------------
# Visualization Functions (Enhanced)
# -----------------------------

def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get full typhoon tracks"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    unique_storms = filtered_data['SID'].unique()
    count = len(unique_storms)
    fig = go.Figure()
    for sid in unique_storms:
        storm_data = typhoon_data[typhoon_data['SID']==sid]
        if storm_data.empty:
            continue
        name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
        basin = storm_data['SID'].iloc[0][:2]
        storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
        color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=f"{name} ({basin})",
            line=dict(width=1.5, color=color), hoverinfo="name"
        ))
    if typhoon_search:
        search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if search_mask.any():
            for sid in typhoon_data[search_mask]['SID'].unique():
                storm_data = typhoon_data[typhoon_data['SID']==sid]
                fig.add_trace(go.Scattergeo(
                    lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
                    name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
                    line=dict(width=3, color='yellow'),
                    marker=dict(size=5), hoverinfo="name"
                ))
    fig.update_layout(
        title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
        geo=dict(
            projection_type='natural earth',
            showland=True,
            showcoastlines=True,
            landcolor='rgb(243,243,243)',
            countrycolor='rgb(204,204,204)',
            coastlinecolor='rgb(204,204,204)',
            center=dict(lon=140, lat=20),
            projection_scale=3
        ),
        legend_title="Typhoons by ENSO Phase",
        showlegend=True,
        height=700
    )
    fig.add_annotation(
        x=0.02, y=0.98, xref="paper", yref="paper",
        text="Red: El NiΓ±o, Blue: La Nina, Green: Neutral",
        showarrow=False, align="left",
        bgcolor="rgba(255,255,255,0.8)"
    )
    return fig, f"Total typhoons displayed: {count}"

def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get wind analysis with enhanced categorization"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Wind Speed vs ONI',
                     labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
                     color_discrete_map=enhanced_color_map)
    
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    
    regression = perform_wind_regression(start_year, start_month, end_year, end_month)
    return fig, regression

def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get pressure analysis with enhanced categorization"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Pressure vs ONI',
                     labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
                     color_discrete_map=enhanced_color_map)
    
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    
    regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
    return fig, regression

def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get longitude analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1,1)
        y = filtered_data['ONI']
        try:
            model = sm.OLS(y, sm.add_constant(X)).fit()
            y_pred = model.predict(sm.add_constant(X))
            fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
            slope = model.params[1]
            slopes_text = f"All Years Slope: {slope:.4f}"
        except Exception as e:
            slopes_text = f"Regression Error: {e}"
    else:
        slopes_text = "Insufficient data for regression"
    
    regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
    return fig, slopes_text, regression

# -----------------------------
# ENHANCED: Animation Functions with Taiwan Standard Support - FIXED VERSION
# -----------------------------

def get_available_years(typhoon_data):
    """Get all available years including 2025 - with error handling"""
    try:
        if typhoon_data is None or typhoon_data.empty:
            return [str(year) for year in range(2000, 2026)]
            
        if 'ISO_TIME' in typhoon_data.columns:
            years = typhoon_data['ISO_TIME'].dt.year.dropna().unique()
        elif 'SEASON' in typhoon_data.columns:
            years = typhoon_data['SEASON'].dropna().unique()
        else:
            years = range(2000, 2026)  # Default range including 2025
        
        # Convert to strings and sort
        year_strings = sorted([str(int(year)) for year in years if not pd.isna(year)])
        
        # Ensure we have at least some years
        if not year_strings:
            return [str(year) for year in range(2000, 2026)]
            
        return year_strings
        
    except Exception as e:
        print(f"Error in get_available_years: {e}")
        return [str(year) for year in range(2000, 2026)]

def update_typhoon_options_enhanced(year, basin):
    """Enhanced typhoon options with TD support and 2025 data"""
    try:
        year = int(year)
        
        # Filter by year - handle both ISO_TIME and SEASON columns
        if 'ISO_TIME' in typhoon_data.columns:
            year_mask = typhoon_data['ISO_TIME'].dt.year == year
        elif 'SEASON' in typhoon_data.columns:
            year_mask = typhoon_data['SEASON'] == year
        else:
            # Fallback - try to extract year from SID or other fields
            year_mask = typhoon_data.index >= 0  # Include all data as fallback
        
        year_data = typhoon_data[year_mask].copy()
        
        # Filter by basin if specified
        if basin != "All Basins":
            basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
            if 'SID' in year_data.columns:
                year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
            elif 'BASIN' in year_data.columns:
                year_data = year_data[year_data['BASIN'] == basin_code]
        
        if year_data.empty:
            return gr.update(choices=["No storms found"], value=None)
        
        # Get unique storms - include ALL intensities (including TD)
        storms = year_data.groupby('SID').agg({
            'NAME': 'first',
            'USA_WIND': 'max'
        }).reset_index()
        
        # Enhanced categorization including TD
        storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced)
        
        # Create options with category information
        options = []
        for _, storm in storms.iterrows():
            name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED'
            sid = storm['SID']
            category = storm['category']
            max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0
            
            option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)"
            options.append(option)
        
        if not options:
            return gr.update(choices=["No storms found"], value=None)
        
        return gr.update(choices=sorted(options), value=options[0])
        
    except Exception as e:
        print(f"Error in update_typhoon_options_enhanced: {e}")
        return gr.update(choices=["Error loading storms"], value=None)

def generate_enhanced_track_video_fixed(year, typhoon_selection, standard):
    """FIXED: Enhanced track video generation with working animation display"""
    if not typhoon_selection or typhoon_selection == "No storms found":
        return None
    
    try:
        # Extract SID from selection
        sid = typhoon_selection.split('(')[1].split(')')[0]
        
        # Get storm data
        storm_df = typhoon_data[typhoon_data['SID'] == sid].copy()
        if storm_df.empty:
            print(f"No data found for storm {sid}")
            return None
        
        # Sort by time
        if 'ISO_TIME' in storm_df.columns:
            storm_df = storm_df.sort_values('ISO_TIME')
        
        # Extract data for animation
        lats = storm_df['LAT'].astype(float).values
        lons = storm_df['LON'].astype(float).values
        
        if 'USA_WIND' in storm_df.columns:
            winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values
        else:
            winds = np.full(len(lats), 30)
        
        # Enhanced metadata
        storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED"
        season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
        
        print(f"Generating FIXED video for {storm_name} ({sid}) with {len(lats)} track points using {standard} standard")
        
        # FIXED: Create figure with proper cartopy setup
        fig = plt.figure(figsize=(16, 10))
        ax = plt.axes(projection=ccrs.PlateCarree())
        
        # Enhanced map features
        ax.stock_img()
        ax.add_feature(cfeature.COASTLINE, linewidth=0.8)
        ax.add_feature(cfeature.BORDERS, linewidth=0.5)
        ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5)
        ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5)
        
        # Set extent based on track
        padding = 5
        ax.set_extent([
            min(lons) - padding, max(lons) + padding,
            min(lats) - padding, max(lats) + padding
        ])
        
        # Add gridlines
        gl = ax.gridlines(draw_labels=True, alpha=0.3)
        gl.top_labels = gl.right_labels = False
        
        # Title
        ax.set_title(f"{season} {storm_name} ({sid}) Track Animation - {standard.upper()} Standard", 
                    fontsize=18, fontweight='bold')
        
        # FIXED: Animation elements - proper initialization with cartopy transforms
        # Initialize empty line for track with correct transform
        track_line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, 
                             label='Track', transform=ccrs.PlateCarree())
        
        # Initialize current position marker
        current_point, = ax.plot([], [], 'o', markersize=15, 
                                transform=ccrs.PlateCarree())
        
        # Historical track points (to show path traversed)
        history_points, = ax.plot([], [], 'o', markersize=6, alpha=0.4, color='blue',
                                 transform=ccrs.PlateCarree())
        
        # Info text box
        info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes, 
                          fontsize=12, verticalalignment='top',
                          bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9))
        
        # FIXED: Color legend with proper categories for both standards
        legend_elements = []
        if standard == 'taiwan':
            categories = ['Tropical Depression', 'Tropical Storm', 'Severe Tropical Storm', 
                         'Typhoon', 'Severe Typhoon', 'Super Typhoon']
            for category in categories:
                color = get_taiwan_color_fixed(category)
                legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
                                                markerfacecolor=color, markersize=10, label=category))
        else:
            categories = ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon', 
                         'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon']
            for category in categories:
                color = get_matplotlib_color(category)
                legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
                                                markerfacecolor=color, markersize=10, label=category))
        
        ax.legend(handles=legend_elements, loc='upper right', fontsize=10)
        
        # FIXED: Animation function with proper artist updates and cartopy compatibility
        def animate_fixed(frame):
            """Fixed animation function that properly updates tracks with cartopy"""
            try:
                if frame >= len(lats):
                    return track_line, current_point, history_points, info_box
                
                # FIXED: Update track line up to current frame
                current_lons = lons[:frame+1]
                current_lats = lats[:frame+1]
                
                # Update the track line data (this is the key fix!)
                track_line.set_data(current_lons, current_lats)
                
                # FIXED: Update historical points (smaller markers showing traversed path)
                if frame > 0:
                    history_points.set_data(current_lons[:-1], current_lats[:-1])
                
                # FIXED: Update current position with correct categorization
                current_wind = winds[frame]
                
                if standard == 'taiwan':
                    category, color = categorize_typhoon_by_standard_fixed(current_wind, 'taiwan')
                else:
                    category, color = categorize_typhoon_by_standard_fixed(current_wind, 'atlantic')
                
                # Debug for first few frames
                if frame < 3:
                    print(f"FIXED Frame {frame}: Wind={current_wind:.1f}kt, Category={category}, Color={color}")
                
                # Update current position marker
                current_point.set_data([lons[frame]], [lats[frame]])
                current_point.set_color(color)
                current_point.set_markersize(12 + current_wind/8)
                
                # FIXED: Enhanced info display with correct Taiwan wind speed conversion
                if 'ISO_TIME' in storm_df.columns and frame < len(storm_df):
                    current_time = storm_df.iloc[frame]['ISO_TIME']
                    time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown'
                else:
                    time_str = f"Step {frame+1}"
                
                # Corrected wind speed display for Taiwan standard
                if standard == 'taiwan':
                    wind_ms = current_wind * 0.514444
                    wind_display = f"{current_wind:.0f} kt ({wind_ms:.1f} m/s)"
                else:
                    wind_display = f"{current_wind:.0f} kt"
                
                info_text = (
                    f"Storm: {storm_name}\n"
                    f"Time: {time_str}\n"
                    f"Position: {lats[frame]:.1f}Β°N, {lons[frame]:.1f}Β°E\n"
                    f"Max Wind: {wind_display}\n"
                    f"Category: {category}\n"
                    f"Standard: {standard.upper()}\n"
                    f"Frame: {frame+1}/{len(lats)}"
                )
                info_box.set_text(info_text)
                
                # FIXED: Return all modified artists (crucial for proper display)
                return track_line, current_point, history_points, info_box
                
            except Exception as e:
                print(f"Error in animate frame {frame}: {e}")
                return track_line, current_point, history_points, info_box
        
        # FIXED: Create animation with cartopy-compatible settings
        # Key fixes: blit=False (crucial for cartopy), proper interval
        anim = animation.FuncAnimation(
            fig, animate_fixed, frames=len(lats),
            interval=600, blit=False, repeat=True  # blit=False is essential for cartopy!
        )
        
        # Save animation with optimized settings
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', 
                                              dir=tempfile.gettempdir())
        
        # FIXED: Writer settings optimized for track visibility
        writer = animation.FFMpegWriter(
            fps=2, bitrate=3000, codec='libx264',  # Slower FPS for better track visibility
            extra_args=['-pix_fmt', 'yuv420p']
        )
        
        print(f"Saving FIXED animation to {temp_file.name}")
        anim.save(temp_file.name, writer=writer, dpi=120)
        plt.close(fig)
        
        print(f"FIXED video generated successfully: {temp_file.name}")
        return temp_file.name
        
    except Exception as e:
        print(f"Error generating FIXED video: {e}")
        import traceback
        traceback.print_exc()
        return None

# FIXED: Update the simplified wrapper function
def simplified_track_video_fixed(year, basin, typhoon, standard):
    """Simplified track video function with FIXED animation and Taiwan classification"""
    if not typhoon:
        return None
    return generate_enhanced_track_video_fixed(year, typhoon, standard)

# -----------------------------
# Enhanced Gradio Interface with Oceanic Data Integration
# -----------------------------

def generate_enhanced_environmental_forecast_text(results, base_forecast_text):
    """Generate enhanced forecast text with environmental details"""
    try:
        current = results['current_prediction']
        env_data = results['environmental_data']
        route_forecast = results['route_forecast']
        
        # Environmental analysis
        env_analysis_text = f"""
        
ENHANCED ENVIRONMENTAL ANALYSIS
{'='*65}

REAL-TIME OCEANIC CONDITIONS:
β€’ SST Data Source: {env_data.get('sst_source', 'Unknown')}
β€’ SLP Data Source: {env_data.get('slp_source', 'Unknown')}
β€’ Real-time Integration: {'βœ… Active' if env_data.get('use_real_data', False) else '❌ Climatological Fallback'}

ENVIRONMENTAL POTENTIAL ANALYSIS:
β€’ Genesis Potential: {current.get('environmental_potential', 'Unknown')} kt
β€’ Environmental Favorability: {current.get('environmental_favorability', 'Unknown')}
β€’ SST Contribution: {current.get('sst_contribution', 0):+.1f} kt
β€’ Current Environmental Limit: {current.get('environmental_potential', 50):.0f} kt

TRACK-POINT ENVIRONMENTAL CONDITIONS:
"""
        
        # Add sample of environmental conditions along track
        if route_forecast and len(route_forecast) > 0:
            sample_points = [0, len(route_forecast)//4, len(route_forecast)//2, 
                           3*len(route_forecast)//4, len(route_forecast)-1]
            
            for i in sample_points:
                if i < len(route_forecast):
                    point = route_forecast[i]
                    env_analysis_text += f"""
β€’ Hour {point['hour']}: 
  - Position: {point['lat']:.1f}Β°N, {point['lon']:.1f}Β°E
  - Intensity: {point['intensity_kt']:.0f} kt (Limit: {point.get('environmental_limit', 'N/A')} kt)
  - SST: {point.get('sst_celsius', 'N/A'):.1f}Β°C | SLP: {point.get('slp_hpa', 'N/A'):.0f} hPa
  - Development Stage: {point['development_stage']}
  - Tendency: {point.get('intensity_tendency', 0):+.1f} kt/6hr"""

        env_analysis_text += f"""

OCEANIC DATA QUALITY ASSESSMENT:
β€’ Position Confidence: {results['confidence_scores'].get('position_72h', 0.5)*100:.0f}% (72hr)
β€’ Intensity Confidence: {results['confidence_scores'].get('intensity_72h', 0.5)*100:.0f}% (72hr)  
β€’ Environmental Coupling: {results['confidence_scores'].get('environmental_coupling', 0.5)*100:.0f}%

TECHNICAL IMPLEMENTATION:
β€’ Model: {results['model_info']}
β€’ Data Protocols: ERDDAP (SST) + OPeNDAP (SLP)
β€’ Spatial Interpolation: Linear with nearest-neighbor fallback
β€’ Physics: Emanuel potential intensity + environmental coupling
        """
        
        return base_forecast_text + env_analysis_text
        
    except Exception as e:
        logging.error(f"Error generating enhanced forecast text: {e}")
        return base_forecast_text + f"\n\nError in environmental analysis: {str(e)}"

# -----------------------------
# Load & Process Data
# -----------------------------

# Global variables initialization
oni_data = None
typhoon_data = None
merged_data = None

def initialize_data():
    """Initialize all data safely"""
    global oni_data, typhoon_data, merged_data, oceanic_manager
    try:
        logging.info("Starting data loading process...")
        
        # Initialize oceanic manager
        oceanic_manager = OceanicDataManager()
        
        update_oni_data()
        oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
        
        if oni_data is not None and typhoon_data is not None:
            oni_long = process_oni_data(oni_data)
            typhoon_max = process_typhoon_data(typhoon_data)
            merged_data = merge_data(oni_long, typhoon_max)
            logging.info("Data loading complete.")
        else:
            logging.error("Failed to load required data")
            # Create minimal fallback data
            oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 
                                   'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 
                                   'Oct': [0], 'Nov': [0], 'Dec': [0]})
            typhoon_data = create_fallback_typhoon_data()
            oni_long = process_oni_data(oni_data)
            typhoon_max = process_typhoon_data(typhoon_data)
            merged_data = merge_data(oni_long, typhoon_max)
    except Exception as e:
        logging.error(f"Error during data initialization: {e}")
        # Create minimal fallback data
        oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 
                               'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 
                               'Oct': [0], 'Nov': [0], 'Dec': [0]})
        typhoon_data = create_fallback_typhoon_data()
        oni_long = process_oni_data(oni_data)
        typhoon_max = process_typhoon_data(typhoon_data)
        merged_data = merge_data(oni_long, typhoon_max)

def create_interface():
    """Create the enhanced Gradio interface with oceanic data integration"""
    try:
        # Ensure data is available
        if oni_data is None or typhoon_data is None or merged_data is None:
            logging.warning("Data not properly loaded, creating minimal interface")
            return create_minimal_fallback_interface()
            
        # Get safe data statistics
        try:
            total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
            total_records = len(typhoon_data)
            available_years = get_available_years(typhoon_data)
            year_range_display = f"{available_years[0]} - {available_years[-1]}" if available_years else "Unknown"
        except Exception as e:
            logging.error(f"Error getting data statistics: {e}")
            total_storms = 0
            total_records = 0
            year_range_display = "Unknown"
            available_years = [str(year) for year in range(2000, 2026)]

        with gr.Blocks(title="Enhanced Typhoon Analysis Platform with Oceanic Data", theme=gr.themes.Soft()) as demo:
            gr.Markdown("# 🌊 Enhanced Typhoon Analysis Platform with Real-time Oceanic Data")
            gr.Markdown("**Advanced ML clustering, real-time SST/SLP integration, route predictions, and comprehensive tropical cyclone analysis**")
            
            with gr.Tab("🏠 Overview"):
                overview_text = f"""
                ## 🌊 Welcome to the Enhanced Typhoon Analysis Dashboard with Oceanic Coupling

                This dashboard provides comprehensive analysis of typhoon data with **real-time oceanic data integration** for unprecedented forecast accuracy.

                ### πŸš€ NEW Oceanic Data Features:
                - **🌊 Real-time SST Data**: NOAA OISST v2 Sea Surface Temperature via ERDDAP
                - **🌑️ Real-time SLP Data**: NCEP/NCAR Sea Level Pressure via OPeNDAP  
                - **πŸ”„ Dynamic Environmental Coupling**: Live oceanic conditions drive intensity predictions
                - **πŸ“Š Historical Environmental Analysis**: Past storm-environment relationships inform predictions
                - **🎯 Environmental Potential Index**: Real-time calculation of maximum possible intensity
                - **🌍 Global Data Coverage**: Automatic fallback to climatology when real-time data unavailable

                ### πŸ“Š Enhanced Capabilities:
                - **Environmental Intensity Modeling**: SST-driven maximum potential intensity calculations
                - **Dynamic Steering**: SLP-based atmospheric steering patterns
                - **ENSO-Environment Coupling**: Combined ENSO and oceanic state influences
                - **Uncertainty Quantification**: Data quality-based confidence scoring
                - **Multi-source Integration**: Seamless blending of real-time and climatological data
                
                ### πŸ“Š Data Status:
                - **ONI Data**: {len(oni_data)} years loaded
                - **Typhoon Data**: {total_records:,} records loaded  
                - **Oceanic Data Sources**: NOAA OISST v2 + NCEP/NCAR Reanalysis
                - **Available Years**: {year_range_display}
                
                ### πŸ”§ Technical Infrastructure:
                - **Real-time Data Access**: xarray + OPeNDAP + ERDDAP protocols
                - **Environmental Interpolation**: Spatial interpolation to storm locations
                - **Physics-based Modeling**: Emanuel potential intensity theory implementation
                - **Fallback Systems**: Robust climatological backup when real-time data unavailable
                
                ### πŸ”¬ Scientific Accuracy:
                - **SST-Intensity Relationship**: Based on latest tropical cyclone research
                - **Shear Parameterization**: ENSO and seasonal wind shear modeling
                - **Genesis Climatology**: Realistic development regions and frequencies
                - **Track Forecasting**: Environmental steering with oceanic state dependencies
                """
                gr.Markdown(overview_text)

            with gr.Tab("🌊 Real-time Oceanic Storm Prediction"):
                gr.Markdown("## 🌊 Advanced Storm Development with Live Oceanic Data")
                
                gr.Markdown("""
                ### πŸ”₯ Revolutionary Features:
                - **🌊 Live SST Integration**: Current sea surface temperatures from NOAA satellites
                - **🌑️ Real-time SLP Data**: Current atmospheric pressure from global reanalysis  
                - **🎯 Environmental Potential**: Real-time calculation of maximum storm intensity
                - **πŸ“ˆ Historical Learning**: Past storm-environment relationships guide predictions
                - **🌍 Global Coverage**: Automatic data fetching with intelligent fallbacks
                """)
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("### 🌊 Genesis & Environmental Configuration")
                        
                        genesis_options = list(get_realistic_genesis_locations().keys())
                        genesis_region = gr.Dropdown(
                            choices=genesis_options,
                            value="Western Pacific Main Development Region",
                            label="🌊 Typhoon Genesis Region",
                            info="Climatologically realistic development regions"
                        )
                        
                        # Enhanced environmental controls
                        with gr.Row():
                            use_real_oceanic = gr.Checkbox(
                                label="🌊 Use Real-time Oceanic Data", 
                                value=True,
                                info="Fetch live SST/SLP data (may take 10-30 seconds)"
                            )
                            show_environmental_details = gr.Checkbox(
                                label="πŸ“Š Show Environmental Analysis", 
                                value=True,
                                info="Display detailed environmental breakdown"
                            )
                        
                        # Display selected region info with real-time data status
                        def update_genesis_info_enhanced(region):
                            locations = get_realistic_genesis_locations()
                            if region in locations:
                                info = locations[region]
                                base_info = f"πŸ“ Location: {info['lat']:.1f}Β°N, {info['lon']:.1f}Β°E\nπŸ“ {info['description']}"
                                
                                # Add climatological information
                                clim_sst = get_climatological_sst(info['lat'], info['lon'], 9)  # September
                                env_potential = calculate_environmental_intensity_potential(
                                    info['lat'], info['lon'], 9, 0.0, None, None
                                )
                                
                                enhanced_info = (
                                    f"{base_info}\n"
                                    f"🌑️ Climatological SST: {clim_sst:.1f}°C\n"
                                    f"⚑ Environmental Potential: {env_potential['potential_intensity']:.0f} kt"
                                )
                                return enhanced_info
                            return "Select a genesis region"
                        
                        genesis_info_display = gr.Textbox(
                            label="Selected Region Analysis",
                            lines=4,
                            interactive=False,
                            value=update_genesis_info_enhanced("Western Pacific Main Development Region")
                        )
                        
                        genesis_region.change(
                            fn=update_genesis_info_enhanced,
                            inputs=[genesis_region],
                            outputs=[genesis_info_display]
                        )
                        
                        with gr.Row():
                            pred_month = gr.Slider(
                                1, 12, label="Month", value=9, 
                                info="Peak season: Jul-Oct (affects SST/shear patterns)"
                            )
                            pred_oni = gr.Number(
                                label="ONI Value", value=0.0, 
                                info="Current ENSO state (-3 to 3, affects oceanic patterns)"
                            )
                        
                        with gr.Row():
                            forecast_hours = gr.Number(
                                label="Forecast Length (hours)", 
                                value=72, 
                                minimum=24,
                                maximum=240,
                                step=6,
                                info="Extended forecasting with environmental evolution"
                            )
                            advanced_physics = gr.Checkbox(
                                label="Advanced Environmental Physics", 
                                value=True,
                                info="Full SST-intensity coupling and wind shear modeling"
                            )
                        
                        with gr.Row():
                            show_uncertainty = gr.Checkbox(
                                label="Environmental Uncertainty Cone", 
                                value=True,
                                info="Uncertainty based on data quality and environmental variability"
                            )
                            enable_animation = gr.Checkbox(
                                label="Animated Development", 
                                value=True,
                                info="Watch storm-environment interaction evolve"
                            )
                
                    with gr.Column(scale=1):
                        gr.Markdown("### βš™οΈ Oceanic Prediction Controls")
                        predict_oceanic_btn = gr.Button(
                            "🌊 Generate Enhanced Oceanic Forecast", 
                            variant="primary", 
                            size="lg"
                        )
                        
                        gr.Markdown("### πŸ“Š Environmental Conditions")
                        current_intensity = gr.Number(label="Genesis Intensity (kt)", interactive=False)
                        current_category = gr.Textbox(label="Initial Category", interactive=False)
                        environmental_potential = gr.Number(label="Environmental Potential (kt)", interactive=False)
                        environmental_favorability = gr.Textbox(label="Environmental Favorability", interactive=False)
                        
                        gr.Markdown("### πŸ”§ Data Sources")
                        sst_data_source = gr.Textbox(label="SST Data Source", interactive=False)
                        slp_data_source = gr.Textbox(label="SLP Data Source", interactive=False)
                        model_confidence = gr.Textbox(label="Model Info", interactive=False)
                
                with gr.Row():
                    route_plot = gr.Plot(label="πŸ—ΊοΈ Advanced Oceanic-Coupled Forecast")
                
                with gr.Row():
                    forecast_details = gr.Textbox(
                        label="πŸ“‹ Comprehensive Environmental Forecast", 
                        lines=25, 
                        max_lines=30
                    )
                
                def run_oceanic_prediction(
                    region, month, oni, hours, advanced_phys, uncertainty, 
                    animation, use_real_data, show_env_details
                ):
                    try:
                        # Run enhanced oceanic prediction
                        results = predict_storm_route_and_intensity_with_oceanic_data(
                            region, month, oni, hours, 
                            use_real_data=use_real_data,
                            models=None, 
                            enable_animation=animation
                        )
                        
                        # Extract enhanced conditions
                        current = results['current_prediction']
                        env_data = results['environmental_data']
                        
                        intensity = current['intensity_kt']
                        category = current['category']
                        env_potential = current.get('environmental_potential', 50)
                        env_favorability = current.get('environmental_favorability', 'Unknown')
                        
                        # Data source information
                        sst_source = env_data.get('sst_source', 'Unknown')
                        slp_source = env_data.get('slp_source', 'Unknown')
                        
                        # Create enhanced visualization
                        fig, forecast_text = create_animated_route_visualization(
                            results, uncertainty, animation
                        )
                        
                        # Enhanced forecast text with environmental details
                        if show_env_details:
                            enhanced_forecast_text = generate_enhanced_environmental_forecast_text(
                                results, forecast_text
                            )
                        else:
                            enhanced_forecast_text = forecast_text
                        
                        model_info = f"{results['model_info']}\nReal-time Data: {'Yes' if use_real_data else 'No'}"
                        
                        return (
                            intensity,
                            category,
                            env_potential,
                            env_favorability,
                            sst_source,
                            slp_source,
                            model_info,
                            fig,
                            enhanced_forecast_text
                        )
                        
                    except Exception as e:
                        error_msg = f"Enhanced oceanic prediction failed: {str(e)}"
                        logging.error(error_msg)
                        import traceback
                        traceback.print_exc()
                        
                        return (
                            30, "Tropical Depression", 50, "Unknown", 
                            "Error", "Error", f"Prediction failed: {str(e)}", 
                            None, f"Error generating enhanced forecast: {str(e)}"
                        )
                
                predict_oceanic_btn.click(
                    fn=run_oceanic_prediction,
                    inputs=[
                        genesis_region, pred_month, pred_oni, forecast_hours, 
                        advanced_physics, show_uncertainty, enable_animation,
                        use_real_oceanic, show_environmental_details
                    ],
                    outputs=[
                        current_intensity, current_category, environmental_potential,
                        environmental_favorability, sst_data_source, slp_data_source,
                        model_confidence, route_plot, forecast_details
                    ]
                )
                
                # Enhanced information section
                oceanic_info_text = """
                ### 🌊 Oceanic Data Integration Features:

                #### πŸ”₯ Real-time Data Sources:
                - **SST**: NOAA OISST v2 - Daily 0.25Β° resolution satellite-based sea surface temperatures
                - **SLP**: NCEP/NCAR Reanalysis - 6-hourly 2.5Β° resolution atmospheric pressure fields
                - **Coverage**: Global oceans with 1-2 day latency for most recent conditions
                - **Protocols**: ERDDAP and OPeNDAP for standardized data access

                #### 🧠 Environmental Physics:
                - **Emanuel Potential Intensity**: Theoretical maximum intensity based on thermodynamics
                - **SST-Intensity Coupling**: Non-linear relationship between sea surface temperature and storm intensity
                - **Atmospheric Steering**: Sea level pressure gradients drive storm motion patterns
                - **Wind Shear Modeling**: Vertical wind shear estimation from pressure patterns and ENSO state

                #### 🎯 Enhanced Accuracy:
                - **Real-time Environmental Limits**: Current oceanic conditions set maximum achievable intensity
                - **Dynamic Development**: Storm intensification rate depends on real SST and atmospheric conditions
                - **Track Steering**: Motion influenced by current pressure patterns rather than climatology alone
                - **Confidence Scoring**: Higher confidence when real-time data successfully integrated

                #### πŸ”„ Fallback Systems:
                - **Automatic Degradation**: Seamlessly switches to climatology if real-time data unavailable
                - **Quality Assessment**: Evaluates data completeness and provides appropriate confidence levels
                - **Hybrid Approach**: Combines real-time data with climatological patterns for optimal accuracy
                - **Error Handling**: Robust system continues operation even with partial data failures

                #### πŸ“Š Output Enhancements:
                - **Environmental Metadata**: Track-point SST, SLP, and environmental limits
                - **Data Source Tracking**: Clear indication of real-time vs climatological data usage
                - **Uncertainty Quantification**: Confidence intervals based on data availability and environmental complexity
                - **Detailed Analysis**: Comprehensive breakdown of environmental factors affecting development
                """
                gr.Markdown(oceanic_info_text)

            with gr.Tab("πŸ”¬ Advanced ML Clustering"):
                gr.Markdown("## 🎯 Storm Pattern Analysis with Separate Visualizations")
                gr.Markdown("**Four separate plots: Clustering, Routes, Pressure Evolution, and Wind Evolution**")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        reduction_method = gr.Dropdown(
                            choices=['UMAP', 't-SNE', 'PCA'], 
                            value='UMAP' if UMAP_AVAILABLE else 't-SNE',
                            label="πŸ” Dimensionality Reduction Method",
                            info="UMAP provides better global structure preservation"
                        )
                    with gr.Column(scale=1):
                        analyze_clusters_btn = gr.Button("πŸš€ Generate All Cluster Analyses", variant="primary", size="lg")
                
                with gr.Row():
                    with gr.Column():
                        cluster_plot = gr.Plot(label="πŸ“Š Storm Clustering Analysis")
                    with gr.Column():
                        routes_plot = gr.Plot(label="πŸ—ΊοΈ Clustered Storm Routes")
                
                with gr.Row():
                    with gr.Column():
                        pressure_plot = gr.Plot(label="🌑️ Pressure Evolution by Cluster")
                    with gr.Column():
                        wind_plot = gr.Plot(label="πŸ’¨ Wind Speed Evolution by Cluster")
                
                with gr.Row():
                    cluster_stats = gr.Textbox(label="πŸ“ˆ Detailed Cluster Statistics", lines=15, max_lines=20)
                
                def run_separate_clustering_analysis(method):
                    try:
                        # Extract features for clustering
                        storm_features = extract_storm_features(typhoon_data)
                        if storm_features is None:
                            return None, None, None, None, "Error: Could not extract storm features"
                        
                        fig_cluster, fig_routes, fig_pressure, fig_wind, stats = create_separate_clustering_plots(
                            storm_features, typhoon_data, method.lower()
                        )
                        return fig_cluster, fig_routes, fig_pressure, fig_wind, stats
                    except Exception as e:
                        import traceback
                        error_details = traceback.format_exc()
                        error_msg = f"Error: {str(e)}\n\nDetails:\n{error_details}"
                        return None, None, None, None, error_msg
                
                analyze_clusters_btn.click(
                    fn=run_separate_clustering_analysis,
                    inputs=[reduction_method],
                    outputs=[cluster_plot, routes_plot, pressure_plot, wind_plot, cluster_stats]
                )

            with gr.Tab("πŸ—ΊοΈ Track Visualization"):
                with gr.Row():
                    start_year = gr.Number(label="Start Year", value=2020)
                    start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    end_year = gr.Number(label="End Year", value=2025)
                    end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    typhoon_search = gr.Textbox(label="Typhoon Search")
                analyze_btn = gr.Button("Generate Tracks")
                tracks_plot = gr.Plot()
                typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
                analyze_btn.click(
                    fn=get_full_tracks,
                    inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
                    outputs=[tracks_plot, typhoon_count]
                )
            
            with gr.Tab("πŸ’¨ Wind Analysis"):
                with gr.Row():
                    wind_start_year = gr.Number(label="Start Year", value=2020)
                    wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    wind_end_year = gr.Number(label="End Year", value=2024)
                    wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    wind_typhoon_search = gr.Textbox(label="Typhoon Search")
                wind_analyze_btn = gr.Button("Generate Wind Analysis")
                wind_scatter = gr.Plot()
                wind_regression_results = gr.Textbox(label="Wind Regression Results")
                wind_analyze_btn.click(
                    fn=get_wind_analysis,
                    inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
                    outputs=[wind_scatter, wind_regression_results]
                )
            
            with gr.Tab("🌑️ Pressure Analysis"):
                with gr.Row():
                    pressure_start_year = gr.Number(label="Start Year", value=2020)
                    pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    pressure_end_year = gr.Number(label="End Year", value=2024)
                    pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
                pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
                pressure_scatter = gr.Plot()
                pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
                pressure_analyze_btn.click(
                    fn=get_pressure_analysis,
                    inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
                    outputs=[pressure_scatter, pressure_regression_results]
                )
            
            with gr.Tab("🌏 Longitude Analysis"):
                with gr.Row():
                    lon_start_year = gr.Number(label="Start Year", value=2020)
                    lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    lon_end_year = gr.Number(label="End Year", value=2020)
                    lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
                lon_analyze_btn = gr.Button("Generate Longitude Analysis")
                regression_plot = gr.Plot()
                slopes_text = gr.Textbox(label="Regression Slopes")
                lon_regression_results = gr.Textbox(label="Longitude Regression Results")
                lon_analyze_btn.click(
                    fn=get_longitude_analysis,
                    inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
                    outputs=[regression_plot, slopes_text, lon_regression_results]
                )
            
            with gr.Tab("🎬 Enhanced Track Animation"):
                gr.Markdown("## πŸŽ₯ High-Quality Storm Track Visualization (Atlantic & Taiwan Standards)")
                
                with gr.Row():
                    year_dropdown = gr.Dropdown(
                        label="Year",
                        choices=available_years,
                        value=available_years[-1] if available_years else "2024"
                    )
                    basin_dropdown = gr.Dropdown(
                        label="Basin",
                        choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"],
                        value="All Basins"
                    )
                
                with gr.Row():
                    typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)")
                    standard_dropdown = gr.Dropdown(
                        label="🎌 Classification Standard",
                        choices=['atlantic', 'taiwan'], 
                        value='atlantic',
                        info="Atlantic: International standard | Taiwan: Local meteorological standard"
                    )
                
                generate_video_btn = gr.Button("🎬 Generate Enhanced Animation", variant="primary")
                video_output = gr.Video(label="Storm Track Animation")
                
                # Update storm options when year or basin changes
                for input_comp in [year_dropdown, basin_dropdown]:
                    input_comp.change(
                        fn=update_typhoon_options_enhanced,
                        inputs=[year_dropdown, basin_dropdown],
                        outputs=[typhoon_dropdown]
                    )
                
                # Generate video with fixed function
                generate_video_btn.click(
                    fn=generate_enhanced_track_video_fixed,
                    inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
                    outputs=[video_output]
                )

            with gr.Tab("πŸ“Š Data Statistics & Insights"):
                gr.Markdown("## πŸ“ˆ Comprehensive Dataset Analysis")
                
                # Create enhanced data summary
                try:
                    if len(typhoon_data) > 0:
                        # Storm category distribution
                        storm_cats = typhoon_data.groupby('SID')['USA_WIND'].max().apply(categorize_typhoon_enhanced)
                        cat_counts = storm_cats.value_counts()
                        
                        # Create distribution chart with enhanced colors
                        fig_dist = px.bar(
                            x=cat_counts.index,
                            y=cat_counts.values,
                            title="Storm Intensity Distribution (Including Tropical Depressions)",
                            labels={'x': 'Category', 'y': 'Number of Storms'},
                            color=cat_counts.index,
                            color_discrete_map=enhanced_color_map
                        )
                        
                        # Seasonal distribution
                        if 'ISO_TIME' in typhoon_data.columns:
                            seasonal_data = typhoon_data.copy()
                            seasonal_data['Month'] = seasonal_data['ISO_TIME'].dt.month
                            monthly_counts = seasonal_data.groupby(['Month', 'SID']).size().groupby('Month').size()
                            
                            fig_seasonal = px.bar(
                                x=monthly_counts.index,
                                y=monthly_counts.values,
                                title="Seasonal Storm Distribution",
                                labels={'x': 'Month', 'y': 'Number of Storms'},
                                color=monthly_counts.values,
                                color_continuous_scale='Viridis'
                            )
                        else:
                            fig_seasonal = None
                        
                        # Basin distribution
                        if 'SID' in typhoon_data.columns:
                            basin_data = typhoon_data['SID'].str[:2].value_counts()
                            fig_basin = px.pie(
                                values=basin_data.values,
                                names=basin_data.index,
                                title="Distribution by Basin"
                            )
                        else:
                            fig_basin = None
                        
                        with gr.Row():
                            gr.Plot(value=fig_dist)
                        
                        if fig_seasonal:
                            with gr.Row():
                                gr.Plot(value=fig_seasonal)
                        
                        if fig_basin:
                            with gr.Row():
                                gr.Plot(value=fig_basin)
                                
                except Exception as e:
                    gr.Markdown(f"Visualization error: {str(e)}")
                
                # Enhanced statistics
                total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
                total_records = len(typhoon_data)
                
                if 'SEASON' in typhoon_data.columns:
                    try:
                        min_year = int(typhoon_data['SEASON'].min())
                        max_year = int(typhoon_data['SEASON'].max())
                        year_range = f"{min_year}-{max_year}"
                        years_covered = typhoon_data['SEASON'].nunique()
                    except (ValueError, TypeError):
                        year_range = "Unknown"
                        years_covered = 0
                else:
                    year_range = "Unknown"
                    years_covered = 0
                
                if 'SID' in typhoon_data.columns:
                    try:
                        basins_available = ', '.join(sorted(typhoon_data['SID'].str[:2].unique()))
                        avg_storms_per_year = total_storms / max(years_covered, 1)
                    except Exception:
                        basins_available = "Unknown"
                        avg_storms_per_year = 0
                else:
                    basins_available = "Unknown"
                    avg_storms_per_year = 0
                
                # TD specific statistics
                try:
                    if 'USA_WIND' in typhoon_data.columns:
                        td_storms = len(typhoon_data[typhoon_data['USA_WIND'] < 34]['SID'].unique())
                        ts_storms = len(typhoon_data[(typhoon_data['USA_WIND'] >= 34) & (typhoon_data['USA_WIND'] < 64)]['SID'].unique())
                        typhoon_storms = len(typhoon_data[typhoon_data['USA_WIND'] >= 64]['SID'].unique())
                        td_percentage = (td_storms / max(total_storms, 1)) * 100
                    else:
                        td_storms = ts_storms = typhoon_storms = 0
                        td_percentage = 0
                except Exception as e:
                    print(f"Error calculating TD statistics: {e}")
                    td_storms = ts_storms = typhoon_storms = 0
                    td_percentage = 0
                
                # Create statistics text safely
                stats_text = f"""
                ### πŸ“Š Enhanced Dataset Summary:
                - **Total Unique Storms**: {total_storms:,}
                - **Total Track Records**: {total_records:,}  
                - **Year Range**: {year_range} ({years_covered} years)
                - **Basins Available**: {basins_available}
                - **Average Storms/Year**: {avg_storms_per_year:.1f}
                
                ### πŸŒͺ️ Storm Category Breakdown:
                - **Tropical Depressions**: {td_storms:,} storms ({td_percentage:.1f}%)
                - **Tropical Storms**: {ts_storms:,} storms
                - **Typhoons (C1-C5)**: {typhoon_storms:,} storms
                
                ### πŸš€ Platform Capabilities:
                - **Complete TD Analysis** - First platform to include comprehensive TD tracking
                - **Dual Classification Systems** - Both Atlantic and Taiwan standards supported
                - **Advanced ML Clustering** - DBSCAN pattern recognition with separate visualizations
                - **Real-time Oceanic Predictions** - Physics-based with SST/SLP integration
                - **2025 Data Ready** - Full compatibility with current season data
                - **Enhanced Animations** - Professional-quality storm track videos
                - **Multi-basin Analysis** - Comprehensive Pacific and Atlantic coverage
                
                ### πŸ”¬ Research Applications:
                - Climate change impact studies
                - Seasonal forecasting research
                - Storm pattern classification
                - ENSO-typhoon relationship analysis
                - Oceanic-atmospheric coupling research
                - Cross-regional classification comparisons
                """
                gr.Markdown(stats_text)

        return demo
        
    except Exception as e:
        logging.error(f"Error creating Gradio interface: {e}")
        import traceback
        traceback.print_exc()
        # Create a minimal fallback interface
        return create_minimal_fallback_interface()

def create_minimal_fallback_interface():
    """Create a minimal fallback interface when main interface fails"""
    with gr.Blocks() as demo:
        gr.Markdown("# Enhanced Typhoon Analysis Platform")
        gr.Markdown("**Notice**: Loading with minimal interface due to data issues.")
        
        with gr.Tab("Status"):
            gr.Markdown("""
            ## Platform Status
            
            The application is running but encountered issues loading the full interface.
            This could be due to:
            - Data loading problems
            - Missing dependencies
            - Configuration issues
            
            ### Available Features:
            - Basic interface is functional
            - Error logs are being generated
            - System is ready for debugging
            
            ### Next Steps:
            1. Check the console logs for detailed error information
            2. Verify all required data files are accessible
            3. Ensure all dependencies are properly installed
            4. Try restarting the application
            """)
        
        with gr.Tab("Debug"):
            gr.Markdown("## Debug Information")
            
            def get_debug_info():
                debug_text = f"""
                Python Environment:
                - Working Directory: {os.getcwd()}
                - Data Path: {DATA_PATH}
                - UMAP Available: {UMAP_AVAILABLE}
                - CNN Available: {CNN_AVAILABLE}
                
                Data Status:
                - ONI Data: {'Loaded' if oni_data is not None else 'Failed'}
                - Typhoon Data: {'Loaded' if typhoon_data is not None else 'Failed'}
                - Merged Data: {'Loaded' if merged_data is not None else 'Failed'}
                
                File Checks:
                - ONI Path Exists: {os.path.exists(ONI_DATA_PATH)}
                - Typhoon Path Exists: {os.path.exists(TYPHOON_DATA_PATH)}
                """
                return debug_text
            
            debug_btn = gr.Button("Get Debug Info")
            debug_output = gr.Textbox(label="Debug Information", lines=15)
            debug_btn.click(fn=get_debug_info, outputs=debug_output)
    
    return demo

# Initialize data
initialize_data()

# Create and launch the interface
demo = create_interface()

if __name__ == "__main__":
    demo.launch(share=True)