File size: 6,614 Bytes
75ae599 58bb914 f494b68 12a86ab c6b4946 f494b68 12a86ab f494b68 cabae73 8e50f32 58bb914 12a86ab 03486e0 75ae599 12a86ab 8e50f32 6ff5d91 8e50f32 cabae73 58bb914 c6b4946 8e50f32 12a86ab 58bb914 819753a 58bb914 c6b4946 8e50f32 58bb914 8e50f32 58bb914 8e50f32 c6b4946 819753a 58bb914 819753a 58bb914 819753a c6b4946 58bb914 8e50f32 58bb914 819753a 58bb914 c6b4946 12a86ab 58bb914 12a86ab cabae73 58bb914 cabae73 12a86ab 11dec21 58bb914 11dec21 58bb914 11dec21 58bb914 8e50f32 58bb914 c6b4946 58bb914 c6b4946 58bb914 11dec21 8e50f32 58bb914 cabae73 11dec21 cabae73 11dec21 58bb914 11dec21 12a86ab 11dec21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import smtplib
import mimetypes
from email.message import EmailMessage
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, address, parents, allergies, cause, email, xray):
# Input validation
name = name[:50]
address = address[:100]
parents = parents[:50]
cause = ' '.join(cause.split()[:100])
image_size = (224, 224)
def predict_fracture(xray_path):
img = Image.open(xray_path).resize(image_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)[0][0]
return prediction
prediction = predict_fracture(xray)
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
treatment_data = [
["Severity Level", "Recommended Treatment", "Recovery Duration"],
["Mild", "Rest, pain relievers, follow-up X-ray", "4-6 weeks"],
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
]
cost_duration_data = [
["Hospital Type", "Estimated Cost", "Recovery Time"],
["Government", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
["Private", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
]
img = Image.open(xray).resize((300, 300))
img_path = f"{name}_xray.png"
img.save(img_path)
report_path = f"{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
c.setFont("Helvetica-Bold", 16)
c.drawString(200, 770, "Bone Fracture Detection Report")
patient_data = [
["Patient Name", name],
["Age", age],
["Gender", gender],
["Weight", f"{weight} kg"],
["Height", f"{height} cm"],
["Address", address],
["Parent's Name", parents],
["Allergies", allergies if allergies else "None"],
["Cause of Injury", cause],
["Diagnosis", diagnosed_class],
["Injury Severity", severity]
]
def format_table(data):
table = Table(data, colWidths=[270, 270])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
]))
return table
patient_table = format_table(patient_data)
patient_table.wrapOn(c, 480, 500)
patient_table.drawOn(c, 50, 620)
c.drawInlineImage(img_path, 170, 320, width=250, height=250)
c.setFont("Helvetica-Bold", 12)
c.drawString(250, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
treatment_table = format_table(treatment_data)
treatment_table.wrapOn(c, 480, 200)
treatment_table.drawOn(c, 50, 200)
cost_table = format_table(cost_duration_data)
cost_table.wrapOn(c, 480, 150)
cost_table.drawOn(c, 50, 80)
c.save()
send_email(email, report_path)
return report_path
# Function to send email
def send_email(receiver_email, attachment_path):
sender_email = "[email protected]"
sender_password = "yourpassword"
msg = EmailMessage()
msg["Subject"] = "Your Bone Fracture Report"
msg["From"] = sender_email
msg["To"] = receiver_email
msg.set_content("Please find attached your bone fracture diagnosis report.")
mime_type, _ = mimetypes.guess_type(attachment_path)
mime_type = mime_type or "application/octet-stream"
with open(attachment_path, "rb") as attachment:
msg.add_attachment(attachment.read(), maintype=mime_type.split("/")[0], subtype=mime_type.split("/")[1], filename=os.path.basename(attachment_path))
with smtplib.SMTP_SSL("smtp.example.com", 465) as server:
server.login(sender_email, sender_password)
server.send_message(msg)
# Function to select a sample image
def use_sample_image(sample_image_path):
return sample_image_path
# Define Gradio Interface
with gr.Blocks() as app:
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name (Max 50 chars)", max_chars=50)
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
address = gr.Textbox(label="Address (Max 100 chars)", max_chars=100)
parents = gr.Textbox(label="Parent's Name (Max 50 chars)", max_chars=50)
with gr.Row():
allergies = gr.Textbox(label="Allergies (if any)")
cause = gr.Textbox(label="Cause of Injury (Max 100 words)")
with gr.Row():
email = gr.Textbox(label="Patient's Email (To receive report)", type="email")
with gr.Row():
xray = gr.Image(type="filepath", label="Upload X-ray Image")
with gr.Row():
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
select_button = gr.Button("Load Sample Image")
submit_button = gr.Button("Generate Report")
output_file = gr.File(label="Download Report")
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
submit_button.click(
generate_report,
inputs=[name, age, gender, weight, height, address, parents, allergies, cause, email, xray],
outputs=[output_file],
)
if __name__ == "__main__":
app.launch() |