File size: 6,614 Bytes
75ae599
58bb914
 
 
f494b68
12a86ab
 
 
 
 
 
c6b4946
 
f494b68
12a86ab
 
f494b68
cabae73
 
 
8e50f32
58bb914
 
 
 
 
 
 
12a86ab
03486e0
75ae599
 
12a86ab
 
 
 
 
8e50f32
6ff5d91
8e50f32
cabae73
58bb914
 
 
 
 
 
 
 
 
 
 
 
c6b4946
8e50f32
 
 
12a86ab
 
 
58bb914
819753a
58bb914
c6b4946
8e50f32
58bb914
8e50f32
 
 
 
58bb914
 
 
 
8e50f32
 
 
c6b4946
819753a
58bb914
819753a
 
 
 
 
 
 
 
 
 
 
 
58bb914
819753a
c6b4946
58bb914
8e50f32
58bb914
 
 
 
 
819753a
58bb914
 
 
c6b4946
12a86ab
 
58bb914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a86ab
cabae73
 
58bb914
cabae73
12a86ab
11dec21
58bb914
11dec21
 
58bb914
11dec21
 
58bb914
8e50f32
 
 
58bb914
c6b4946
58bb914
 
 
 
 
 
c6b4946
58bb914
 
 
11dec21
8e50f32
58bb914
cabae73
 
 
11dec21
 
 
 
cabae73
 
11dec21
 
58bb914
11dec21
 
12a86ab
 
11dec21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import smtplib
import mimetypes
from email.message import EmailMessage
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle

# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")

# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]

# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, address, parents, allergies, cause, email, xray):
    # Input validation
    name = name[:50]  
    address = address[:100]  
    parents = parents[:50]  
    cause = ' '.join(cause.split()[:100])  

    image_size = (224, 224)

    def predict_fracture(xray_path):
        img = Image.open(xray_path).resize(image_size)
        img_array = image.img_to_array(img) / 255.0
        img_array = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_array)[0][0]
        return prediction

    prediction = predict_fracture(xray)
    diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
    severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"

    treatment_data = [
        ["Severity Level", "Recommended Treatment", "Recovery Duration"],
        ["Mild", "Rest, pain relievers, follow-up X-ray", "4-6 weeks"],
        ["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
        ["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
    ]

    cost_duration_data = [
        ["Hospital Type", "Estimated Cost", "Recovery Time"],
        ["Government", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
        ["Private", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
    ]

    img = Image.open(xray).resize((300, 300))
    img_path = f"{name}_xray.png"
    img.save(img_path)

    report_path = f"{name}_fracture_report.pdf"
    c = canvas.Canvas(report_path, pagesize=letter)
    
    c.setFont("Helvetica-Bold", 16)
    c.drawString(200, 770, "Bone Fracture Detection Report")

    patient_data = [
        ["Patient Name", name],
        ["Age", age],
        ["Gender", gender],
        ["Weight", f"{weight} kg"],
        ["Height", f"{height} cm"],
        ["Address", address],
        ["Parent's Name", parents],
        ["Allergies", allergies if allergies else "None"],
        ["Cause of Injury", cause],
        ["Diagnosis", diagnosed_class],
        ["Injury Severity", severity]
    ]

    def format_table(data):
        table = Table(data, colWidths=[270, 270])
        table.setStyle(TableStyle([
            ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
            ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
            ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
            ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
            ('BOTTOMPADDING', (0, 0), (-1, 0), 12),
            ('GRID', (0, 0), (-1, -1), 1, colors.black),
            ('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
        ]))
        return table

    patient_table = format_table(patient_data)
    patient_table.wrapOn(c, 480, 500)
    patient_table.drawOn(c, 50, 620)

    c.drawInlineImage(img_path, 170, 320, width=250, height=250)
    c.setFont("Helvetica-Bold", 12)
    c.drawString(250, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")

    treatment_table = format_table(treatment_data)
    treatment_table.wrapOn(c, 480, 200)
    treatment_table.drawOn(c, 50, 200)

    cost_table = format_table(cost_duration_data)
    cost_table.wrapOn(c, 480, 150)
    cost_table.drawOn(c, 50, 80)

    c.save()

    send_email(email, report_path)  

    return report_path  

# Function to send email
def send_email(receiver_email, attachment_path):
    sender_email = "[email protected]"  
    sender_password = "yourpassword"  

    msg = EmailMessage()
    msg["Subject"] = "Your Bone Fracture Report"
    msg["From"] = sender_email
    msg["To"] = receiver_email
    msg.set_content("Please find attached your bone fracture diagnosis report.")

    mime_type, _ = mimetypes.guess_type(attachment_path)
    mime_type = mime_type or "application/octet-stream"

    with open(attachment_path, "rb") as attachment:
        msg.add_attachment(attachment.read(), maintype=mime_type.split("/")[0], subtype=mime_type.split("/")[1], filename=os.path.basename(attachment_path))

    with smtplib.SMTP_SSL("smtp.example.com", 465) as server:
        server.login(sender_email, sender_password)
        server.send_message(msg)

# Function to select a sample image
def use_sample_image(sample_image_path):
    return sample_image_path  

# Define Gradio Interface
with gr.Blocks() as app:
    gr.Markdown("## Bone Fracture Detection System")
    
    with gr.Row():
        name = gr.Textbox(label="Patient Name (Max 50 chars)", max_chars=50)
        age = gr.Number(label="Age")
        gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
    
    with gr.Row():
        weight = gr.Number(label="Weight (kg)")
        height = gr.Number(label="Height (cm)")
    
    with gr.Row():
        address = gr.Textbox(label="Address (Max 100 chars)", max_chars=100)
        parents = gr.Textbox(label="Parent's Name (Max 50 chars)", max_chars=50)
    
    with gr.Row():
        allergies = gr.Textbox(label="Allergies (if any)")
        cause = gr.Textbox(label="Cause of Injury (Max 100 words)")

    with gr.Row():
        email = gr.Textbox(label="Patient's Email (To receive report)", type="email")
    
    with gr.Row():
        xray = gr.Image(type="filepath", label="Upload X-ray Image")
    
    with gr.Row():
        sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
        select_button = gr.Button("Load Sample Image")

    submit_button = gr.Button("Generate Report")
    output_file = gr.File(label="Download Report")

    select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])

    submit_button.click(
        generate_report,
        inputs=[name, age, gender, weight, height, address, parents, allergies, cause, email, xray],
        outputs=[output_file],
    )

if __name__ == "__main__":
    app.launch()