File size: 47,698 Bytes
5263bd3
 
f5ea8d6
5263bd3
f1d4be6
5263bd3
4a7c026
bcf9134
 
9a5c352
 
dbad921
50ef7f7
 
 
dbad921
 
 
 
7b2a54f
345980e
 
a6886ca
962ae70
de0719b
962ae70
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0719b
5263bd3
 
b5edb58
962ae70
de0719b
962ae70
 
de0719b
870813f
 
 
f1d4be6
870813f
d01c414
 
870813f
 
 
 
 
 
de0719b
870813f
 
 
 
a6886ca
 
 
 
 
 
de0719b
a6886ca
 
 
77621ec
de0719b
6be7ede
962ae70
345980e
962ae70
cbacd3e
bc5e648
af1df76
bc5e648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345980e
2ed8007
de0719b
 
 
 
 
962ae70
 
 
 
 
 
 
 
de0719b
77621ec
 
962ae70
 
 
 
de0719b
 
 
 
 
 
d01c414
 
de0719b
77621ec
de0719b
 
 
 
 
 
 
 
77621ec
d01c414
 
77621ec
d01c414
 
de0719b
552aec4
 
de0719b
d76e76a
 
de0719b
 
 
 
 
 
 
 
 
77621ec
 
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
77621ec
 
 
 
 
 
de0719b
2e254a9
 
77621ec
962ae70
 
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
 
d01c414
de0719b
d01c414
de0719b
 
 
 
 
 
f1d4be6
 
de0719b
d01c414
9308c12
de0719b
 
 
962ae70
f5ea8d6
962ae70
9cb16e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26706f8
9cb16e9
f5ea8d6
 
 
 
 
 
 
 
9cb16e9
f5ea8d6
9cb16e9
f5ea8d6
 
 
9cb16e9
f5ea8d6
 
 
82425ee
9308c12
d01c414
f5ea8d6
 
 
82425ee
9cb16e9
f5ea8d6
 
 
 
 
 
 
 
 
 
 
77621ec
 
f5ea8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb16e9
 
 
 
77621ec
f5ea8d6
9cb16e9
26706f8
455bf4d
f5ea8d6
455bf4d
56468ea
de0719b
 
d01c414
de0719b
 
 
 
 
 
 
d01c414
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77621ec
de0719b
 
 
9308c12
 
d01c414
de0719b
77621ec
9308c12
77621ec
 
9308c12
 
 
 
 
e502db5
9308c12
e502db5
 
1869cbd
37ce441
9308c12
37ce441
e502db5
1869cbd
8ef755b
1869cbd
8ef755b
1869cbd
1b8562c
1869cbd
e502db5
1869cbd
 
e502db5
1869cbd
1b8562c
1869cbd
 
 
8ef755b
 
1869cbd
 
 
e502db5
 
88b80ae
 
 
9308c12
88b80ae
 
 
 
 
 
 
 
 
 
 
6c4adfb
87c2305
9308c12
 
87c2305
6c4adfb
 
88b80ae
 
87c2305
9308c12
6c4adfb
87c2305
9308c12
6c4adfb
88b80ae
6c4adfb
88b80ae
6c4adfb
 
 
 
 
 
 
 
 
 
 
 
87c2305
9308c12
6c4adfb
9308c12
6c4adfb
77621ec
6c4adfb
87c2305
9308c12
87c2305
6c4adfb
 
9308c12
 
88b80ae
6c4adfb
 
 
 
87c2305
9308c12
6c4adfb
9308c12
 
6c4adfb
 
 
87c2305
6c4adfb
 
88b80ae
 
6c4adfb
 
 
88b80ae
6c4adfb
9308c12
6c4adfb
9308c12
6c4adfb
 
9308c12
6c4adfb
 
 
9308c12
6c4adfb
 
 
 
 
 
 
 
77621ec
 
87c2305
9308c12
87c2305
5a41c75
88b80ae
 
 
d01c414
88b80ae
 
 
 
d01c414
88b80ae
9308c12
88b80ae
 
 
9308c12
88b80ae
 
 
9308c12
 
88b80ae
 
 
9308c12
88b80ae
 
 
 
 
9308c12
88b80ae
 
 
 
 
 
 
9308c12
88b80ae
 
 
 
 
 
 
9308c12
88b80ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9308c12
88b80ae
 
 
 
 
 
9308c12
88b80ae
 
 
 
 
 
 
 
9308c12
d01c414
88b80ae
 
 
d01c414
2fd86ff
18efb8a
 
 
0c54683
9308c12
 
 
 
 
 
 
 
 
 
 
 
dbad921
9308c12
2fd86ff
 
 
 
 
 
 
 
9308c12
2fd86ff
 
 
 
 
 
 
 
 
 
 
9308c12
2fd86ff
 
 
 
 
 
9308c12
2fd86ff
 
dbad921
9308c12
2fd86ff
 
9308c12
2fd86ff
 
 
 
 
9308c12
2fd86ff
 
dbad921
9308c12
dbad921
9308c12
dbad921
9308c12
 
dbad921
 
 
 
 
 
 
 
 
 
9308c12
dbad921
9308c12
 
 
 
 
 
dbad921
 
1b5b7bf
 
9308c12
 
1b5b7bf
9308c12
 
 
7d672a0
1b5b7bf
 
7d672a0
 
9308c12
 
ae32958
7d672a0
1b5b7bf
7d672a0
9308c12
1b5b7bf
9308c12
1b5b7bf
 
7d672a0
 
1b5b7bf
9308c12
1b5b7bf
 
 
9308c12
ae32958
7d672a0
 
 
 
 
1b5b7bf
9308c12
 
1b5b7bf
9308c12
7d672a0
1b5b7bf
 
9308c12
1b5b7bf
 
9308c12
7d672a0
9308c12
 
 
 
 
 
7d672a0
 
1b5b7bf
 
 
 
 
 
9308c12
7d672a0
9308c12
 
7d672a0
9308c12
7d672a0
 
9308c12
 
7d672a0
9308c12
 
 
1b5b7bf
9308c12
7d672a0
 
9308c12
 
7d672a0
9308c12
 
1b5b7bf
9308c12
7d672a0
1b5b7bf
 
 
 
9308c12
1b5b7bf
9308c12
 
7d672a0
 
1b5b7bf
9308c12
7d672a0
 
 
 
1b5b7bf
9308c12
7d672a0
 
 
1b5b7bf
7d672a0
 
 
 
 
 
1b5b7bf
9308c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5b7bf
7d672a0
 
0c54683
d01c414
 
9308c12
 
 
0c54683
 
 
 
9308c12
0c54683
9308c12
 
0c54683
 
 
 
 
 
 
 
9308c12
 
0c54683
 
9308c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18efb8a
9308c12
0c54683
 
9308c12
 
0c54683
9308c12
 
0c54683
 
9308c12
 
0c54683
9308c12
0c54683
 
 
 
 
 
9308c12
0c54683
9308c12
 
 
 
 
 
0c54683
9308c12
 
 
 
0c54683
9308c12
 
0c54683
 
 
9308c12
0c54683
 
 
 
 
9308c12
 
0c54683
9308c12
0c54683
 
9308c12
0c54683
 
 
9308c12
0c54683
ae32958
2fd86ff
 
 
 
 
9308c12
2fd86ff
 
 
 
 
9308c12
2fd86ff
 
 
 
 
 
 
9cb16e9
de0719b
9cb16e9
de0719b
 
127024e
 
 
 
 
 
 
 
 
 
 
 
 
de0719b
 
 
 
2fd86ff
 
 
de0719b
 
 
 
9308c12
 
 
 
 
 
 
de0719b
 
 
 
 
77621ec
9308c12
9cb16e9
b6ec5a3
9cb16e9
 
 
77621ec
9308c12
de0719b
b6ec5a3
de0719b
77621ec
de0719b
 
9cb16e9
127024e
 
b6ec5a3
9cb16e9
de0719b
 
d01c414
9cb16e9
b6ec5a3
9cb16e9
 
 
 
 
 
e5a3715
de0719b
 
f5ea8d6
9cb16e9
de0719b
77621ec
de0719b
56468ea
de0719b
9308c12
 
56468ea
de0719b
 
 
 
77621ec
de0719b
 
 
9308c12
d01c414
de0719b
 
 
2fd86ff
 
 
 
 
 
9308c12
 
345980e
 
9308c12
345980e
9308c12
 
 
 
2fd86ff
 
 
9308c12
 
2fd86ff
9308c12
 
 
2fd86ff
 
9308c12
127024e
2fd86ff
 
 
9308c12
2fd86ff
de0719b
82425ee
2fd86ff
77621ec
 
9308c12
 
 
 
 
 
 
77621ec
 
 
9308c12
 
77621ec
9308c12
 
77621ec
 
 
 
 
9308c12
d01c414
77621ec
 
 
2fd86ff
77621ec
 
de0719b
9308c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb16e9
9308c12
de0719b
9308c12
723da6d
9cb16e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors 
from matplotlib.colors import LinearSegmentedColormap
import io 
from io import BytesIO # Import io then BytesIO 
from PIL import Image, ImageDraw, ImageFont
from Bio.Graphics import GenomeDiagram
from Bio.SeqFeature import SeqFeature, FeatureLocation
from reportlab.lib import colors
import pandas as pd
import tempfile
import os
from typing import List, Dict, Tuple, Optional, Any
import seaborn as sns
import shap


###############################################################################
# 1. MODEL DEFINITION
###############################################################################

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################

def parse_fasta(text):
    sequences = []
    current_header = None
    current_sequence = []
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1
    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec /= total_kmers
    return vec

###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################

def calculate_shap_values(model, x_tensor):
    model.eval()
    with torch.no_grad():
        baseline_output = model(x_tensor)
        baseline_probs = torch.softmax(baseline_output, dim=1)
        baseline_prob = baseline_probs[0, 1].item()  # Prob of 'human'
        shap_values = []
        x_zeroed = x_tensor.clone()
        for i in range(x_tensor.shape[1]):
            original_val = x_zeroed[0, i].item()
            x_zeroed[0, i] = 0.0
            output = model(x_zeroed)
            probs = torch.softmax(output, dim=1)
            prob = probs[0, 1].item()
            shap_values.append(baseline_prob - prob)
            x_zeroed[0, i] = original_val
    return np.array(shap_values), baseline_prob


###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################

def compute_positionwise_scores(sequence, shap_values, k=4):
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    seq_len = len(sequence)
    shap_sums = np.zeros(seq_len, dtype=np.float32)
    coverage = np.zeros(seq_len, dtype=np.float32)
    for i in range(seq_len - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            val = shap_values[kmer_dict[kmer]]
            shap_sums[i:i+k] += val
            coverage[i:i+k] += 1
    with np.errstate(divide='ignore', invalid='ignore'):
        shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
    return shap_means

###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################

def find_extreme_subregion(shap_means, window_size=500, mode="max"):
    n = len(shap_means)
    if n == 0:
        return (0, 0, 0.0)
    if window_size >= n:
        return (0, n, float(np.mean(shap_means)))
    csum = np.zeros(n + 1, dtype=np.float32)
    csum[1:] = np.cumsum(shap_means)
    best_start = 0
    best_sum = csum[window_size] - csum[0]
    best_avg = best_sum / window_size
    for start in range(1, n - window_size + 1):
        wsum = csum[start + window_size] - csum[start]
        wavg = wsum / window_size
        if mode == "max" and wavg > best_avg:
            best_avg = wavg
            best_start = start
        elif mode == "min" and wavg < best_avg:
            best_avg = wavg
            best_start = start
    return (best_start, best_start + window_size, float(best_avg))

###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################

def fig_to_image(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    buf.seek(0)
    img = Image.open(buf)
    plt.close(fig)
    return img

def get_zero_centered_cmap():
    colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
    return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)

def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
    if start is not None and end is not None:
        local_shap = shap_means[start:end]
        subtitle = f" (positions {start}-{end})"
    else:
        local_shap = shap_means
        subtitle = ""
    if len(local_shap) == 0:
        local_shap = np.array([0.0])
    heatmap_data = local_shap.reshape(1, -1)
    min_val = np.min(local_shap)
    max_val = np.max(local_shap)
    extent = max(abs(min_val), abs(max_val))
    cmap = get_zero_centered_cmap()
    fig, ax = plt.subplots(figsize=(12, 1.8))
    cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
    cbar.ax.tick_params(labelsize=8)
    cbar.set_label('SHAP Contribution', fontsize=9, labelpad=5)
    ax.set_yticks([])
    ax.set_xlabel('Position in Sequence', fontsize=10)
    ax.set_title(f"{title}{subtitle}", pad=10)
    plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
    return fig

def create_importance_bar_plot(shap_values, kmers, top_k=10):
    plt.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(10, 5))
    indices = np.argsort(np.abs(shap_values))[-top_k:]
    values = shap_values[indices]
    features = [kmers[i] for i in indices]
    colors = ['#99ccff' if v < 0 else '#ff9999' for v in values]
    plt.barh(range(len(values)), values, color=colors)
    plt.yticks(range(len(values)), features)
    plt.xlabel('SHAP Value (impact on model output)')
    plt.title(f'Top {top_k} Most Influential k-mers')
    plt.gca().invert_yaxis()
    plt.tight_layout()
    return fig

def plot_shap_histogram(shap_array, title="SHAP Distribution in Region", num_bins=30):
    fig, ax = plt.subplots(figsize=(6, 4))
    ax.hist(shap_array, bins=num_bins, color='gray', edgecolor='black')
    ax.axvline(0, color='red', linestyle='--', label='0.0')
    ax.set_xlabel("SHAP Value")
    ax.set_ylabel("Count")
    ax.set_title(title)
    ax.legend()
    plt.tight_layout()
    return fig

def compute_gc_content(sequence):
    if not sequence:
        return 0
    gc_count = sequence.count('G') + sequence.count('C')
    return (gc_count / len(sequence)) * 100.0

###############################################################################
# 7. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################
def create_kmer_shap_csv(kmers, shap_values):
    """Create a CSV file with k-mer SHAP values and return the filepath"""
    # Create DataFrame with k-mers and SHAP values
    kmer_df = pd.DataFrame({
        'kmer': kmers,
        'shap_value': shap_values,
        'abs_shap': np.abs(shap_values)
    })
    
    # Sort by absolute SHAP value (most influential first)
    kmer_df = kmer_df.sort_values('abs_shap', ascending=False)
    
    # Drop the abs_shap column used for sorting
    kmer_df = kmer_df[['kmer', 'shap_value']]
    
    # Save to temporary file
    temp_dir = tempfile.gettempdir()
    temp_path = os.path.join(temp_dir, f"kmer_shap_values_{os.urandom(4).hex()}.csv")
    kmer_df.to_csv(temp_path, index=False)
    
    return temp_path  # Return only the file path, not a tuple

def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500):
    if fasta_text.strip():
        text = fasta_text.strip()
    elif file_obj is not None:
        try:
            with open(file_obj, 'r') as f:
                text = f.read()
        except Exception as e:
            return (f"Error reading file: {str(e)}", None, None, None, None, None, None)
    else:
        return ("Please provide a FASTA sequence.", None, None, None, None, None, None)

    sequences = parse_fasta(text)
    if not sequences:
        return ("No valid FASTA sequences found.", None, None, None, None, None, None)
    header, seq = sequences[0]

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    try:
        # IMPORTANT: adjust how you load your model as needed
        state_dict = torch.load('model.pt', map_location=device)
        model = VirusClassifier(256).to(device)
        model.load_state_dict(state_dict)
        scaler = joblib.load('scaler.pkl')
    except Exception as e:
        return (f"Error loading model/scaler: {str(e)}", None, None, None, None, None, None)

    freq_vector = sequence_to_kmer_vector(seq)
    scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
    x_tensor = torch.FloatTensor(scaled_vector).to(device)

    shap_values, prob_human = calculate_shap_values(model, x_tensor)
    prob_nonhuman = 1.0 - prob_human
    classification = "Human" if prob_human > 0.5 else "Non-human"
    confidence = max(prob_human, prob_nonhuman)

    shap_means = compute_positionwise_scores(seq, shap_values, k=4)
    max_start, max_end, max_avg = find_extreme_subregion(shap_means, window_size, mode="max")
    min_start, min_end, min_avg = find_extreme_subregion(shap_means, window_size, mode="min")

    results_text = (
        f"Sequence: {header}\n"
        f"Length: {len(seq):,} bases\n"
        f"Classification: {classification}\n"
        f"Confidence: {confidence:.3f}\n"
        f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n"
        f"---\n"
        f"**Most Human-Pushing {window_size}-bp Subregion**:\n"
        f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n"
        f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n"
        f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}"
    )

    kmers = [''.join(p) for p in product("ACGT", repeat=4)]
    bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
    bar_img = fig_to_image(bar_fig)

    heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
    heatmap_img = fig_to_image(heatmap_fig)

    # Create CSV with k-mer SHAP values and return the file path
    kmer_shap_csv = create_kmer_shap_csv(kmers, shap_values)

    # State dictionary for subregion analysis
    state_dict_out = {"seq": seq, "shap_means": shap_means}

    return (results_text, bar_img, heatmap_img, state_dict_out, header, None, kmer_shap_csv)
    
###############################################################################
# 8. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################

def analyze_subregion(state, header, region_start, region_end):
    if not state or "seq" not in state or "shap_means" not in state:
        return ("No sequence data found. Please run Step 1 first.", None, None, None)
    seq = state["seq"]
    shap_means = state["shap_means"]
    region_start = int(region_start)
    region_end = int(region_end)
    region_start = max(0, min(region_start, len(seq)))
    region_end = max(0, min(region_end, len(seq)))
    if region_end <= region_start:
        return ("Invalid region range. End must be > Start.", None, None, None)
    region_seq = seq[region_start:region_end]
    region_shap = shap_means[region_start:region_end]
    gc_percent = compute_gc_content(region_seq)
    avg_shap = float(np.mean(region_shap))
    positive_fraction = np.mean(region_shap > 0)
    negative_fraction = np.mean(region_shap < 0)
    if avg_shap > 0.05:
        region_classification = "Likely pushing toward human"
    elif avg_shap < -0.05:
        region_classification = "Likely pushing toward non-human"
    else:
        region_classification = "Near neutral (no strong push)"
    region_info = (
        f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
        f"Region length: {len(region_seq)} bases\n"
        f"GC content: {gc_percent:.2f}%\n"
        f"Average SHAP in region: {avg_shap:.4f}\n"
        f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
        f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
        f"Subregion interpretation: {region_classification}\n"
    )
    heatmap_fig = plot_linear_heatmap(shap_means, title="Subregion SHAP", start=region_start, end=region_end)
    heatmap_img = fig_to_image(heatmap_fig)
    hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
    hist_img = fig_to_image(hist_fig)
    
    # For demonstration, returning None for the file download as well
    return (region_info, heatmap_img, hist_img, None)

###############################################################################
# 9. COMPARISON ANALYSIS FUNCTIONS
###############################################################################

def get_zero_centered_cmap():
    """Create a zero-centered blue-white-red colormap"""
    colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
    return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)

def compute_shap_difference(shap1_norm, shap2_norm):
    """Compute the SHAP difference between normalized sequences"""
    return shap2_norm - shap1_norm

def plot_comparative_heatmap(shap_diff, title="SHAP Difference Heatmap"):
    """
    Plot heatmap using relative positions (0-100%)
    """
    heatmap_data = shap_diff.reshape(1, -1)
    extent = max(abs(np.min(shap_diff)), abs(np.max(shap_diff)))
    
    fig, ax = plt.subplots(figsize=(12, 1.8))
    cmap = get_zero_centered_cmap()
    cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
    
    # Create percentage-based x-axis ticks
    num_ticks = 5
    tick_positions = np.linspace(0, shap_diff.shape[0]-1, num_ticks)
    tick_labels = [f"{int(x*100)}%" for x in np.linspace(0, 1, num_ticks)]
    ax.set_xticks(tick_positions)
    ax.set_xticklabels(tick_labels)
    
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
    cbar.ax.tick_params(labelsize=8)
    cbar.set_label('SHAP Difference (Seq2 - Seq1)', fontsize=9, labelpad=5)
    
    ax.set_yticks([])
    ax.set_xlabel('Relative Position in Sequence', fontsize=10)
    ax.set_title(title, pad=10)
    plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
    
    return fig

def plot_shap_histogram(shap_array, title="SHAP Distribution", num_bins=30):
    """
    Plot histogram of SHAP values with configurable number of bins
    """
    fig, ax = plt.subplots(figsize=(6, 4))
    ax.hist(shap_array, bins=num_bins, color='gray', edgecolor='black', alpha=0.7)
    ax.axvline(0, color='red', linestyle='--', label='0.0')
    ax.set_xlabel("SHAP Value")
    ax.set_ylabel("Count")
    ax.set_title(title)
    ax.legend()
    plt.tight_layout()
    return fig

def calculate_adaptive_parameters(len1, len2):
    """
    Calculate adaptive parameters based on sequence lengths and their difference.
    Returns: (num_points, smooth_window, resolution_factor)
    """
    length_diff = abs(len1 - len2)
    max_length = max(len1, len2)
    min_length = min(len1, len2)
    length_ratio = min_length / max_length
    
    # Base number of points scales with sequence length
    base_points = min(2000, max(500, max_length // 100))
    
    # Adjust parameters based on sequence properties
    if length_diff < 500:
        resolution_factor = 2.0
        num_points = min(3000, base_points * 2)
        smooth_window = max(10, length_diff // 50)
    elif length_diff < 5000:
        resolution_factor = 1.5
        num_points = min(2000, base_points * 1.5)
        smooth_window = max(20, length_diff // 100)
    elif length_diff < 50000:
        resolution_factor = 1.0
        num_points = base_points
        smooth_window = max(50, length_diff // 200)
    else:
        resolution_factor = 0.75
        num_points = max(500, base_points // 2)
        smooth_window = max(100, length_diff // 500)
    
    # Adjust window size based on length ratio
    smooth_window = int(smooth_window * (1 + (1 - length_ratio)))
    
    return int(num_points), int(smooth_window), resolution_factor

def sliding_window_smooth(values, window_size=50):
    """
    Apply sliding window smoothing with edge handling
    """
    if window_size < 3:
        return values
    
    # Create window with exponential decay at edges
    window = np.ones(window_size)
    decay = np.exp(-np.linspace(0, 3, window_size // 2))
    window[:window_size // 2] = decay
    window[-(window_size // 2):] = decay[::-1]
    window = window / window.sum()
    
    # Apply convolution
    smoothed = np.convolve(values, window, mode='valid')
    
    # Handle edges
    pad_size = len(values) - len(smoothed)
    pad_left = pad_size // 2
    pad_right = pad_size - pad_left
    
    result = np.zeros_like(values)
    result[pad_left:-pad_right] = smoothed
    result[:pad_left] = values[:pad_left]
    result[-pad_right:] = values[-pad_right:]
    
    return result

def normalize_shap_lengths(shap1, shap2):
    """
    Normalize and smooth SHAP values with dynamic adaptation
    """
    # Calculate adaptive parameters
    num_points, smooth_window, _ = calculate_adaptive_parameters(len(shap1), len(shap2))
    
    # Apply initial smoothing
    shap1_smooth = sliding_window_smooth(shap1, smooth_window)
    shap2_smooth = sliding_window_smooth(shap2, smooth_window)
    
    # Create relative positions and interpolate
    x1 = np.linspace(0, 1, len(shap1_smooth))
    x2 = np.linspace(0, 1, len(shap2_smooth))
    x_norm = np.linspace(0, 1, num_points)
    
    shap1_interp = np.interp(x_norm, x1, shap1_smooth)
    shap2_interp = np.interp(x_norm, x2, shap2_smooth)
    
    return shap1_interp, shap2_interp, smooth_window

def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
    """
    Compare two sequences with adaptive parameters and visualization
    """
    try:
        # Analyze first sequence
        res1 = analyze_sequence(file1, top_kmers=10, fasta_text=fasta1, window_size=500)
        if isinstance(res1[0], str) and "Error" in res1[0]:
            return (f"Error in sequence 1: {res1[0]}", None, None, None)
        
        # Analyze second sequence
        res2 = analyze_sequence(file2, top_kmers=10, fasta_text=fasta2, window_size=500)
        if isinstance(res2[0], str) and "Error" in res2[0]:
            return (f"Error in sequence 2: {res2[0]}", None, None, None)

        # Extract SHAP values and sequence info
        shap1 = res1[3]["shap_means"]
        shap2 = res2[3]["shap_means"]
        
        # Calculate sequence properties
        len1, len2 = len(shap1), len(shap2)
        length_diff = abs(len1 - len2)
        length_ratio = min(len1, len2) / max(len1, len2)
        
        # Normalize and compare sequences
        shap1_norm, shap2_norm, smooth_window = normalize_shap_lengths(shap1, shap2)
        shap_diff = compute_shap_difference(shap1_norm, shap2_norm)
        
        # Calculate adaptive threshold and statistics
        base_threshold = 0.05
        adaptive_threshold = base_threshold * (1 + (1 - length_ratio))
        if length_diff > 50000:
            adaptive_threshold *= 1.5
        
        # Calculate comparison statistics
        avg_diff = np.mean(shap_diff)
        std_diff = np.std(shap_diff)
        max_diff = np.max(shap_diff)
        min_diff = np.min(shap_diff)
        substantial_diffs = np.abs(shap_diff) > adaptive_threshold
        frac_different = np.mean(substantial_diffs)

        # Extract classifications
        try:
            classification1 = res1[0].split('Classification: ')[1].split('\n')[0].strip()
            classification2 = res2[0].split('Classification: ')[1].split('\n')[0].strip()
        except:
            classification1 = "Unknown"
            classification2 = "Unknown"
        
        # Format output text
        comparison_text = (
            "Sequence Comparison Results:\n"
            f"Sequence 1: {res1[4]}\n"
            f"Length: {len1:,} bases\n"
            f"Classification: {classification1}\n\n"
            f"Sequence 2: {res2[4]}\n"
            f"Length: {len2:,} bases\n"
            f"Classification: {classification2}\n\n"
            "Comparison Parameters:\n"
            f"Length Difference: {length_diff:,} bases\n"
            f"Length Ratio: {length_ratio:.3f}\n"
            f"Smoothing Window: {smooth_window} points\n"
            f"Adaptive Threshold: {adaptive_threshold:.3f}\n\n"
            "Statistics:\n"
            f"Average SHAP difference: {avg_diff:.4f}\n"
            f"Standard deviation: {std_diff:.4f}\n"
            f"Max difference: {max_diff:.4f} (Seq2 more human-like)\n"
            f"Min difference: {min_diff:.4f} (Seq1 more human-like)\n"
            f"Fraction with substantial differences: {frac_different:.2%}\n\n"
            "Note: All parameters automatically adjusted based on sequence properties\n\n"
            "Interpretation:\n"
            "- Red regions: Sequence 2 more human-like\n"
            "- Blue regions: Sequence 1 more human-like\n"
            "- White regions: Similar between sequences"
        )
        
        # Generate visualizations
        heatmap_fig = plot_comparative_heatmap(
            shap_diff,
            title=f"SHAP Difference Heatmap (window: {smooth_window})"
        )
        heatmap_img = fig_to_image(heatmap_fig)
        
        # Create histogram with adaptive bins
        num_bins = max(20, min(50, int(np.sqrt(len(shap_diff)))))
        hist_fig = plot_shap_histogram(
            shap_diff,
            title="Distribution of SHAP Differences",
            num_bins=num_bins
        )
        hist_img = fig_to_image(hist_fig)
        
        # Return 4 outputs (text, image, image, and a file or None for the last)
        return (comparison_text, heatmap_img, hist_img, None)
        
    except Exception as e:
        error_msg = f"Error during sequence comparison: {str(e)}"
        return (error_msg, None, None, None)

###############################################################################
# 11. GENE FEATURE ANALYSIS
###############################################################################

import io
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import pandas as pd
import tempfile
import os
from typing import List, Dict, Tuple, Optional, Any
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns

def parse_gene_features(text: str) -> List[Dict[str, Any]]:
    """Parse gene features from text file in FASTA-like format"""
    genes = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
            
        if line.startswith('>'):
            if current_header:
                genes.append({
                    'header': current_header,
                    'sequence': ''.join(current_sequence),
                    'metadata': parse_gene_metadata(current_header)
                })
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
            
    if current_header:
        genes.append({
            'header': current_header,
            'sequence': ''.join(current_sequence),
            'metadata': parse_gene_metadata(current_header)
        })
    
    return genes

def parse_gene_metadata(header: str) -> Dict[str, str]:
    """Extract metadata from gene header"""
    metadata = {}
    parts = header.split()
    
    for part in parts:
        if '[' in part and ']' in part:
            key_value = part[1:-1].split('=', 1)
            if len(key_value) == 2:
                metadata[key_value[0]] = key_value[1]
                
    return metadata

def parse_location(location_str: str) -> Tuple[Optional[int], Optional[int]]:
    """Parse gene location string, handling both forward and complement strands"""
    try:
        # Remove 'complement(' and ')' if present
        clean_loc = location_str.replace('complement(', '').replace(')', '')
        
        # Split on '..' and convert to integers
        if '..' in clean_loc:
            start, end = map(int, clean_loc.split('..'))
            return start, end
        else:
            return None, None
    except Exception as e:
        print(f"Error parsing location {location_str}: {str(e)}")
        return None, None

def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
    """Compute statistical measures for gene SHAP values"""
    return {
        'avg_shap': float(np.mean(gene_shap)),
        'median_shap': float(np.median(gene_shap)),
        'std_shap': float(np.std(gene_shap)),
        'max_shap': float(np.max(gene_shap)),
        'min_shap': float(np.min(gene_shap)),
        'pos_fraction': float(np.mean(gene_shap > 0))
    }

def create_simple_genome_diagram(gene_results: List[Dict[str, Any]], genome_length: int) -> Image.Image:
    """
    Create a simple genome diagram using PIL, forcing a minimum color intensity
    so that small SHAP values don't appear white.
    """
    from PIL import Image, ImageDraw, ImageFont
    
    # Validate inputs
    if not gene_results or genome_length <= 0:
        img = Image.new('RGB', (800, 100), color='white')
        draw = ImageDraw.Draw(img)
        draw.text((10, 40), "Error: Invalid input data", fill='black')
        return img
        
    # Ensure all gene coordinates are valid integers
    for gene in gene_results:
        gene['start'] = max(0, int(gene['start']))
        gene['end'] = min(genome_length, int(gene['end']))
        if gene['start'] >= gene['end']:
            print(f"Warning: Invalid coordinates for gene {gene.get('gene_name','?')}: {gene['start']}-{gene['end']}")
    
    # Image dimensions
    width = 1500
    height = 600
    margin = 50
    track_height = 40
    
    # Create image with white background
    img = Image.new('RGB', (width, height), 'white')
    draw = ImageDraw.Draw(img)
    
    # Try to load font, fall back to default if unavailable
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 12)
        title_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
    except:
        font = ImageFont.load_default()
        title_font = ImageFont.load_default()
    
    # Draw title
    draw.text((margin, margin // 2), "Genome SHAP Analysis", fill='black', font=title_font or font)
    
    # Draw genome line
    line_y = height // 2
    draw.line([(int(margin), int(line_y)), (int(width - margin), int(line_y))], fill='black', width=2)
    
    # Calculate scale factor
    scale = float(width - 2 * margin) / float(genome_length)
    
    # Determine a reasonable step for scale markers
    num_ticks = 10
    if genome_length < num_ticks:
        step = 1
    else:
        step = genome_length // num_ticks
    
    # Draw scale markers
    for i in range(0, genome_length + 1, step):
        x_coord = margin + i * scale
        draw.line([
            (int(x_coord), int(line_y - 5)), 
            (int(x_coord), int(line_y + 5))
        ], fill='black', width=1)
        draw.text((int(x_coord - 20), int(line_y + 10)), f"{i:,}", fill='black', font=font)
    
    # Sort genes by absolute SHAP value for drawing
    sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']))
    
    # Draw genes
    for idx, gene in enumerate(sorted_genes):
        # Calculate position and ensure integers
        start_x = margin + int(gene['start'] * scale)
        end_x   = margin + int(gene['end'] * scale)
        
        # Calculate color based on SHAP value
        avg_shap = gene['avg_shap']
        
        # Convert shap -> color intensity (0 to 255)
        # Then clamp to a minimum intensity so it never ends up plain white
        intensity = int(abs(avg_shap) * 500)
        intensity = max(50, min(255, intensity))  # clamp between 50 and 255

        if avg_shap > 0:
            # Red-ish for positive
            color = (255, 255 - intensity, 255 - intensity)
        else:
            # Blue-ish for negative or zero
            color = (255 - intensity, 255 - intensity, 255)
        
        # Draw gene rectangle
        draw.rectangle([
            (int(start_x), int(line_y - track_height // 2)),
            (int(end_x),   int(line_y + track_height // 2))
        ], fill=color, outline='black')
        
        # Prepare gene name label
        label = str(gene.get('gene_name','?'))
        
        # Fallback for label size
        label_mask = font.getmask(label)
        label_width, label_height = label_mask.size
        
        # Alternate label positions
        if idx % 2 == 0:
            text_y = line_y - track_height - 15
        else:
            text_y = line_y + track_height + 5
        
        # Decide whether to rotate text based on space
        gene_width = end_x - start_x
        if gene_width > label_width:
            text_x = start_x + (gene_width - label_width) // 2
            draw.text((int(text_x), int(text_y)), label, fill='black', font=font)
        elif gene_width > 20:
            txt_img = Image.new('RGBA', (label_width, label_height), (255, 255, 255, 0))
            txt_draw = ImageDraw.Draw(txt_img)
            txt_draw.text((0, 0), label, font=font, fill='black')
            rotated_img = txt_img.rotate(90, expand=True)
            img.paste(rotated_img, (int(start_x), int(text_y)), rotated_img)
    
    # Draw legend
    legend_x = margin
    legend_y = height - margin
    draw.text((int(legend_x), int(legend_y - 60)), "SHAP Values:", fill='black', font=font)
    
    # Draw legend boxes
    box_width = 20
    box_height = 20
    spacing = 15
    
    # Strong human-like
    draw.rectangle([
        (int(legend_x), int(legend_y - 45)), 
        (int(legend_x + box_width), int(legend_y - 45 + box_height))
    ], fill=(255, 0, 0), outline='black')
    draw.text((int(legend_x + box_width + spacing), int(legend_y - 45)), 
              "Strong human-like signal", fill='black', font=font)
    
    # Weak human-like
    draw.rectangle([
        (int(legend_x), int(legend_y - 20)), 
        (int(legend_x + box_width), int(legend_y - 20 + box_height))
    ], fill=(255, 200, 200), outline='black')
    draw.text((int(legend_x + box_width + spacing), int(legend_y - 20)), 
              "Weak human-like signal", fill='black', font=font)
    
    # Weak non-human-like
    draw.rectangle([
        (int(legend_x + 250), int(legend_y - 45)), 
        (int(legend_x + 250 + box_width), int(legend_y - 45 + box_height))
    ], fill=(200, 200, 255), outline='black')
    draw.text((int(legend_x + 250 + box_width + spacing), int(legend_y - 45)), 
              "Weak non-human-like signal", fill='black', font=font)
    
    # Strong non-human-like
    draw.rectangle([
        (int(legend_x + 250), int(legend_y - 20)), 
        (int(legend_x + 250 + box_width), int(legend_y - 20 + box_height))
    ], fill=(0, 0, 255), outline='black')
    draw.text((int(legend_x + 250 + box_width + spacing), int(legend_y - 20)), 
              "Strong non-human-like signal", fill='black', font=font)
    
    return img

def analyze_gene_features(sequence_file: str, 
                          features_file: str, 
                          fasta_text: str = "", 
                          features_text: str = "") -> Tuple[str, Optional[str], Optional[Image.Image]]:
    """Analyze SHAP values for each gene feature"""
    # First analyze whole sequence
    sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
    if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
        return f"Error in sequence analysis: {sequence_results[0]}", None, None
        
    # Get SHAP values
    shap_means = sequence_results[3]["shap_means"]
    
    # Parse gene features
    try:
        if features_text.strip():
            genes = parse_gene_features(features_text)
        else:
            with open(features_file, 'r') as f:
                genes = parse_gene_features(f.read())
    except Exception as e:
        return f"Error reading features file: {str(e)}", None, None
            
    # Analyze each gene
    gene_results = []
    for gene in genes:
        try:
            location = gene['metadata'].get('location', '')
            if not location:
                continue
                
            start, end = parse_location(location)
            if start is None or end is None:
                continue
                
            # Get SHAP values for this region
            gene_shap = shap_means[start:end]
            stats = compute_gene_statistics(gene_shap)
            
            gene_results.append({
                'gene_name': gene['metadata'].get('gene', 'Unknown'),
                'location': location,
                'start': start,
                'end': end,
                'locus_tag': gene['metadata'].get('locus_tag', ''),
                'avg_shap': stats['avg_shap'],
                'median_shap': stats['median_shap'],
                'std_shap': stats['std_shap'],
                'max_shap': stats['max_shap'],
                'min_shap': stats['min_shap'],
                'pos_fraction': stats['pos_fraction'],
                'classification': 'Human' if stats['avg_shap'] > 0 else 'Non-human',
                'confidence': abs(stats['avg_shap'])
            })
            
        except Exception as e:
            print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
            continue
    
    if not gene_results:
        return "No valid genes could be processed", None, None
            
    # Sort genes by absolute SHAP value
    sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']), reverse=True)
    
    # Create results text
    results_text = "Gene Analysis Results:\n\n"
    results_text += f"Total genes analyzed: {len(gene_results)}\n"
    results_text += f"Human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Human')}\n"
    results_text += f"Non-human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Non-human')}\n\n"
    
    results_text += "Top 10 most distinctive genes:\n"
    for gene in sorted_genes[:10]:
        results_text += (
            f"Gene: {gene['gene_name']}\n"
            f"Location: {gene['location']}\n"
            f"Classification: {gene['classification']} "
            f"(confidence: {gene['confidence']:.4f})\n"
            f"Average SHAP: {gene['avg_shap']:.4f}\n\n"
        )
    
    # Create CSV content
    csv_content = "gene_name,location,avg_shap,median_shap,std_shap,max_shap,min_shap,"
    csv_content += "pos_fraction,classification,confidence,locus_tag\n"
    
    for gene in gene_results:
        csv_content += (
            f"{gene['gene_name']},{gene['location']},{gene['avg_shap']:.4f},"
            f"{gene['median_shap']:.4f},{gene['std_shap']:.4f},{gene['max_shap']:.4f},"
            f"{gene['min_shap']:.4f},{gene['pos_fraction']:.4f},{gene['classification']},"
            f"{gene['confidence']:.4f},{gene['locus_tag']}\n"
        )
    
    # Save CSV to temp file
    try:
        temp_dir = tempfile.gettempdir()
        temp_path = os.path.join(temp_dir, f"gene_analysis_{os.urandom(4).hex()}.csv")
        
        with open(temp_path, 'w') as f:
            f.write(csv_content)
    except Exception as e:
        print(f"Error saving CSV: {str(e)}")
        temp_path = None
    
    # Create visualization
    try:
        diagram_img = create_simple_genome_diagram(gene_results, len(shap_means))
    except Exception as e:
        print(f"Error creating visualization: {str(e)}")
        # Create error image
        diagram_img = Image.new('RGB', (800, 100), color='white')
        draw = ImageDraw.Draw(diagram_img)
        draw.text((10, 40), f"Error creating visualization: {str(e)}", fill='black')
    
    return results_text, temp_path, diagram_img

###############################################################################
# 12. DOWNLOAD FUNCTIONS
###############################################################################

def prepare_csv_download(data, filename="analysis_results.csv"):
    """Prepare CSV data for download"""
    if isinstance(data, str):
        return data.encode(), filename
    elif isinstance(data, (list, dict)):
        import csv
        from io import StringIO
        
        output = StringIO()
        writer = csv.DictWriter(output, fieldnames=data[0].keys())
        writer.writeheader()
        writer.writerows(data)
        return output.getvalue().encode(), filename
    else:
        raise ValueError("Unsupported data type for CSV download")

###############################################################################
# 14. BUILD GRADIO INTERFACE
###############################################################################

def load_example_fasta():
    """Load the example.fasta file contents"""
    try:
        with open('example.fasta', 'r') as f:
            example_text = f.read()
        return example_text
    except Exception as e:
        return f">example_sequence\nACGTACGT...\n\n(Note: Could not load example.fasta: {str(e)})"
        
###############################################################################
# 14. BUILD GRADIO INTERFACE
###############################################################################

css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
.download-button {
    margin-top: 10px;
}
"""

with gr.Blocks(css=css) as iface:
    gr.Markdown("""
    # Virus Host Classifier
    **Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.  
    **Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.  
    **Step 3**: Analyze gene features and their contributions.  
    **Step 4**: Compare sequences and analyze differences.
    
    **Color Scale**: Negative SHAP = Blue, Zero = White, Positive SHAP = Red.
    """)
    
    with gr.Tab("1) Full-Sequence Analysis"):
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                text_input = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
                
                # Add example FASTA button in a row
                with gr.Row():
                    example_btn = gr.Button("Load Example FASTA", variant="secondary")
                
                top_k = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Number of top k-mers to display")
                win_size = gr.Slider(minimum=100, maximum=5000, value=500, step=100, label="Window size for 'most pushing' subregions")
                analyze_btn = gr.Button("Analyze Sequence", variant="primary")
            
            with gr.Column(scale=2):
                results_box = gr.Textbox(label="Classification Results", lines=12, interactive=False)
                kmer_img = gr.Image(label="Top k-mer SHAP")
                genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)")
                
                # File components with the correct type parameter
                download_kmer_shap = gr.File(label="Download k-mer SHAP Values (CSV)", visible=True, type="filepath")
                download_results = gr.File(label="Download Results", visible=True, elem_classes="download-button")
        
        seq_state = gr.State()
        header_state = gr.State()

        # Event handlers
        # Connect the example button
        example_btn.click(
            load_example_fasta,
            inputs=[],
            outputs=[text_input]
        )
        
        # Connect the analyze button
        analyze_btn.click(
            analyze_sequence,
            inputs=[file_input, top_k, text_input, win_size],
            outputs=[results_box, kmer_img, genome_img, seq_state, header_state, download_results, download_kmer_shap]
        )

    with gr.Tab("2) Subregion Exploration"):
        gr.Markdown("""
        **Subregion Analysis**  
        Select start/end positions to view local SHAP signals, distribution, GC content, etc.
        The heatmap uses the same Blue-White-Red scale.
        """)
        with gr.Row():
            region_start = gr.Number(label="Region Start", value=0)
            region_end = gr.Number(label="Region End", value=500)
            region_btn = gr.Button("Analyze Subregion")
        subregion_info = gr.Textbox(label="Subregion Analysis", lines=7, interactive=False)
        with gr.Row():
            subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)")
            subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
        download_subregion = gr.File(label="Download Subregion Analysis", visible=False, elem_classes="download-button")
        
        region_btn.click(
            analyze_subregion,
            inputs=[seq_state, header_state, region_start, region_end],
            outputs=[subregion_info, subregion_img, subregion_hist_img, download_subregion]
        )

    with gr.Tab("3) Gene Features Analysis"):
        gr.Markdown("""
        **Analyze Gene Features**  
        Upload a FASTA file and corresponding gene features file to analyze SHAP values per gene.
        Gene features should be in the format:
        
>gene_name [gene=X] [locus_tag=Y] [location=start..end] or [location=complement(start..end)]
        SEQUENCE

        The genome viewer will show genes color-coded by their contribution:
        - Red: Genes pushing toward human origin
        - Blue: Genes pushing toward non-human origin
        - Color intensity indicates strength of signal
        """)
        with gr.Row():
            with gr.Column(scale=1):
                gene_fasta_file = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                gene_fasta_text = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
            with gr.Column(scale=1):
                features_file = gr.File(label="Upload gene features file", file_types=[".txt"], type="filepath")
                features_text = gr.Textbox(label="Or paste gene features", placeholder=">gene_1 [gene=U12]...\nACGT...", lines=5)
        
        analyze_genes_btn = gr.Button("Analyze Gene Features", variant="primary")
        gene_results = gr.Textbox(label="Gene Analysis Results", lines=12, interactive=False)
        gene_diagram = gr.Image(label="Genome Diagram with Gene Features")
        download_gene_results = gr.File(label="Download Gene Analysis (CSV)", visible=True, type="filepath")
        
        analyze_genes_btn.click(
            analyze_gene_features,
            inputs=[gene_fasta_file, features_file, gene_fasta_text, features_text],
            outputs=[gene_results, download_gene_results, gene_diagram]
        )
    
    with gr.Tab("4) Comparative Analysis"):
        gr.Markdown("""
        **Compare Two Sequences**  
        Upload or paste two FASTA sequences to compare their SHAP patterns.
        The sequences will be normalized to the same length for comparison.
        
        **Color Scale**:  
        - Red: Sequence 2 more human-like  
        - Blue: Sequence 1 more human-like  
        - White: No substantial difference
        """)
        with gr.Row():
            with gr.Column(scale=1):
                file_input1 = gr.File(label="Upload first FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                text_input1 = gr.Textbox(label="Or paste first FASTA sequence", placeholder=">sequence1\nACGTACGT...", lines=5)
            with gr.Column(scale=1):
                file_input2 = gr.File(label="Upload second FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                text_input2 = gr.Textbox(label="Or paste second FASTA sequence", placeholder=">sequence2\nACGTACGT...", lines=5)
        compare_btn = gr.Button("Compare Sequences", variant="primary")
        comparison_text = gr.Textbox(label="Comparison Results", lines=12, interactive=False)
        with gr.Row():
            diff_heatmap = gr.Image(label="SHAP Difference Heatmap")
            diff_hist = gr.Image(label="Distribution of SHAP Differences")
        download_comparison = gr.File(label="Download Comparison Results", visible=False, elem_classes="download-button")

        compare_btn.click(
            analyze_sequence_comparison,
            inputs=[file_input1, file_input2, text_input1, text_input2],
            outputs=[comparison_text, diff_heatmap, diff_hist, download_comparison]
        )
    
    gr.Markdown("""
    ### Interface Features
    - **Overall Classification** (human vs non-human) using k-mer frequencies
    - **SHAP Analysis** shows which k-mers push classification toward or away from human
    - **White-Centered SHAP Gradient**: 
      - Negative (blue), 0 (white), Positive (red)
      - Symmetrical color range around 0
    - **Identify Subregions** with strongest push for human or non-human
    - **Gene Feature Analysis**:
      - Analyze individual genes' contributions
      - Interactive genome viewer
      - Gene-level statistics and classification
    - **Sequence Comparison**:
      - Compare two sequences to identify regions of difference
      - Normalized comparison to handle different lengths
      - Statistical summary of differences
    - **Data Export**:
      - Download results as CSV files
      - Download k-mer SHAP values
      - Save analysis outputs for further processing
    """)

if __name__ == "__main__":
    iface.launch()