Spaces:
Running
Running
File size: 47,698 Bytes
5263bd3 f5ea8d6 5263bd3 f1d4be6 5263bd3 4a7c026 bcf9134 9a5c352 dbad921 50ef7f7 dbad921 7b2a54f 345980e a6886ca 962ae70 de0719b 962ae70 5263bd3 de0719b 5263bd3 b5edb58 962ae70 de0719b 962ae70 de0719b 870813f f1d4be6 870813f d01c414 870813f de0719b 870813f a6886ca de0719b a6886ca 77621ec de0719b 6be7ede 962ae70 345980e 962ae70 cbacd3e bc5e648 af1df76 bc5e648 345980e 2ed8007 de0719b 962ae70 de0719b 77621ec 962ae70 de0719b d01c414 de0719b 77621ec de0719b 77621ec d01c414 77621ec d01c414 de0719b 552aec4 de0719b d76e76a de0719b 77621ec de0719b 77621ec de0719b 2e254a9 77621ec 962ae70 de0719b 6d0235b d01c414 de0719b d01c414 de0719b f1d4be6 de0719b d01c414 9308c12 de0719b 962ae70 f5ea8d6 962ae70 9cb16e9 26706f8 9cb16e9 f5ea8d6 9cb16e9 f5ea8d6 9cb16e9 f5ea8d6 9cb16e9 f5ea8d6 82425ee 9308c12 d01c414 f5ea8d6 82425ee 9cb16e9 f5ea8d6 77621ec f5ea8d6 9cb16e9 77621ec f5ea8d6 9cb16e9 26706f8 455bf4d f5ea8d6 455bf4d 56468ea de0719b d01c414 de0719b d01c414 de0719b 77621ec de0719b 9308c12 d01c414 de0719b 77621ec 9308c12 77621ec 9308c12 e502db5 9308c12 e502db5 1869cbd 37ce441 9308c12 37ce441 e502db5 1869cbd 8ef755b 1869cbd 8ef755b 1869cbd 1b8562c 1869cbd e502db5 1869cbd e502db5 1869cbd 1b8562c 1869cbd 8ef755b 1869cbd e502db5 88b80ae 9308c12 88b80ae 6c4adfb 87c2305 9308c12 87c2305 6c4adfb 88b80ae 87c2305 9308c12 6c4adfb 87c2305 9308c12 6c4adfb 88b80ae 6c4adfb 88b80ae 6c4adfb 87c2305 9308c12 6c4adfb 9308c12 6c4adfb 77621ec 6c4adfb 87c2305 9308c12 87c2305 6c4adfb 9308c12 88b80ae 6c4adfb 87c2305 9308c12 6c4adfb 9308c12 6c4adfb 87c2305 6c4adfb 88b80ae 6c4adfb 88b80ae 6c4adfb 9308c12 6c4adfb 9308c12 6c4adfb 9308c12 6c4adfb 9308c12 6c4adfb 77621ec 87c2305 9308c12 87c2305 5a41c75 88b80ae d01c414 88b80ae d01c414 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 88b80ae 9308c12 d01c414 88b80ae d01c414 2fd86ff 18efb8a 0c54683 9308c12 dbad921 9308c12 2fd86ff 9308c12 2fd86ff 9308c12 2fd86ff 9308c12 2fd86ff dbad921 9308c12 2fd86ff 9308c12 2fd86ff 9308c12 2fd86ff dbad921 9308c12 dbad921 9308c12 dbad921 9308c12 dbad921 9308c12 dbad921 9308c12 dbad921 1b5b7bf 9308c12 1b5b7bf 9308c12 7d672a0 1b5b7bf 7d672a0 9308c12 ae32958 7d672a0 1b5b7bf 7d672a0 9308c12 1b5b7bf 9308c12 1b5b7bf 7d672a0 1b5b7bf 9308c12 1b5b7bf 9308c12 ae32958 7d672a0 1b5b7bf 9308c12 1b5b7bf 9308c12 7d672a0 1b5b7bf 9308c12 1b5b7bf 9308c12 7d672a0 9308c12 7d672a0 1b5b7bf 9308c12 7d672a0 9308c12 7d672a0 9308c12 7d672a0 9308c12 7d672a0 9308c12 1b5b7bf 9308c12 7d672a0 9308c12 7d672a0 9308c12 1b5b7bf 9308c12 7d672a0 1b5b7bf 9308c12 1b5b7bf 9308c12 7d672a0 1b5b7bf 9308c12 7d672a0 1b5b7bf 9308c12 7d672a0 1b5b7bf 7d672a0 1b5b7bf 9308c12 1b5b7bf 7d672a0 0c54683 d01c414 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 18efb8a 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 9308c12 0c54683 ae32958 2fd86ff 9308c12 2fd86ff 9308c12 2fd86ff 9cb16e9 de0719b 9cb16e9 de0719b 127024e de0719b 2fd86ff de0719b 9308c12 de0719b 77621ec 9308c12 9cb16e9 b6ec5a3 9cb16e9 77621ec 9308c12 de0719b b6ec5a3 de0719b 77621ec de0719b 9cb16e9 127024e b6ec5a3 9cb16e9 de0719b d01c414 9cb16e9 b6ec5a3 9cb16e9 e5a3715 de0719b f5ea8d6 9cb16e9 de0719b 77621ec de0719b 56468ea de0719b 9308c12 56468ea de0719b 77621ec de0719b 9308c12 d01c414 de0719b 2fd86ff 9308c12 345980e 9308c12 345980e 9308c12 2fd86ff 9308c12 2fd86ff 9308c12 2fd86ff 9308c12 127024e 2fd86ff 9308c12 2fd86ff de0719b 82425ee 2fd86ff 77621ec 9308c12 77621ec 9308c12 77621ec 9308c12 77621ec 9308c12 d01c414 77621ec 2fd86ff 77621ec de0719b 9308c12 9cb16e9 9308c12 de0719b 9308c12 723da6d 9cb16e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import io
from io import BytesIO # Import io then BytesIO
from PIL import Image, ImageDraw, ImageFont
from Bio.Graphics import GenomeDiagram
from Bio.SeqFeature import SeqFeature, FeatureLocation
from reportlab.lib import colors
import pandas as pd
import tempfile
import os
from typing import List, Dict, Tuple, Optional, Any
import seaborn as sns
import shap
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec /= total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
model.eval()
with torch.no_grad():
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Prob of 'human'
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_val = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
shap_values.append(baseline_prob - prob)
x_zeroed[0, i] = original_val
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i:i+k] += val
coverage[i:i+k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################
def find_extreme_subregion(shap_means, window_size=500, mode="max"):
n = len(shap_means)
if n == 0:
return (0, 0, 0.0)
if window_size >= n:
return (0, n, float(np.mean(shap_means)))
csum = np.zeros(n + 1, dtype=np.float32)
csum[1:] = np.cumsum(shap_means)
best_start = 0
best_sum = csum[window_size] - csum[0]
best_avg = best_sum / window_size
for start in range(1, n - window_size + 1):
wsum = csum[start + window_size] - csum[start]
wavg = wsum / window_size
if mode == "max" and wavg > best_avg:
best_avg = wavg
best_start = start
elif mode == "min" and wavg < best_avg:
best_avg = wavg
best_start = start
return (best_start, best_start + window_size, float(best_avg))
###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def get_zero_centered_cmap():
colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
if start is not None and end is not None:
local_shap = shap_means[start:end]
subtitle = f" (positions {start}-{end})"
else:
local_shap = shap_means
subtitle = ""
if len(local_shap) == 0:
local_shap = np.array([0.0])
heatmap_data = local_shap.reshape(1, -1)
min_val = np.min(local_shap)
max_val = np.max(local_shap)
extent = max(abs(min_val), abs(max_val))
cmap = get_zero_centered_cmap()
fig, ax = plt.subplots(figsize=(12, 1.8))
cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
cbar.ax.tick_params(labelsize=8)
cbar.set_label('SHAP Contribution', fontsize=9, labelpad=5)
ax.set_yticks([])
ax.set_xlabel('Position in Sequence', fontsize=10)
ax.set_title(f"{title}{subtitle}", pad=10)
plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
return fig
def create_importance_bar_plot(shap_values, kmers, top_k=10):
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#99ccff' if v < 0 else '#ff9999' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP Value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
plt.tight_layout()
return fig
def plot_shap_histogram(shap_array, title="SHAP Distribution in Region", num_bins=30):
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(shap_array, bins=num_bins, color='gray', edgecolor='black')
ax.axvline(0, color='red', linestyle='--', label='0.0')
ax.set_xlabel("SHAP Value")
ax.set_ylabel("Count")
ax.set_title(title)
ax.legend()
plt.tight_layout()
return fig
def compute_gc_content(sequence):
if not sequence:
return 0
gc_count = sequence.count('G') + sequence.count('C')
return (gc_count / len(sequence)) * 100.0
###############################################################################
# 7. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################
def create_kmer_shap_csv(kmers, shap_values):
"""Create a CSV file with k-mer SHAP values and return the filepath"""
# Create DataFrame with k-mers and SHAP values
kmer_df = pd.DataFrame({
'kmer': kmers,
'shap_value': shap_values,
'abs_shap': np.abs(shap_values)
})
# Sort by absolute SHAP value (most influential first)
kmer_df = kmer_df.sort_values('abs_shap', ascending=False)
# Drop the abs_shap column used for sorting
kmer_df = kmer_df[['kmer', 'shap_value']]
# Save to temporary file
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, f"kmer_shap_values_{os.urandom(4).hex()}.csv")
kmer_df.to_csv(temp_path, index=False)
return temp_path # Return only the file path, not a tuple
def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500):
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return (f"Error reading file: {str(e)}", None, None, None, None, None, None)
else:
return ("Please provide a FASTA sequence.", None, None, None, None, None, None)
sequences = parse_fasta(text)
if not sequences:
return ("No valid FASTA sequences found.", None, None, None, None, None, None)
header, seq = sequences[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
# IMPORTANT: adjust how you load your model as needed
state_dict = torch.load('model.pt', map_location=device)
model = VirusClassifier(256).to(device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
except Exception as e:
return (f"Error loading model/scaler: {str(e)}", None, None, None, None, None, None)
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
shap_values, prob_human = calculate_shap_values(model, x_tensor)
prob_nonhuman = 1.0 - prob_human
classification = "Human" if prob_human > 0.5 else "Non-human"
confidence = max(prob_human, prob_nonhuman)
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
max_start, max_end, max_avg = find_extreme_subregion(shap_means, window_size, mode="max")
min_start, min_end, min_avg = find_extreme_subregion(shap_means, window_size, mode="min")
results_text = (
f"Sequence: {header}\n"
f"Length: {len(seq):,} bases\n"
f"Classification: {classification}\n"
f"Confidence: {confidence:.3f}\n"
f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n"
f"---\n"
f"**Most Human-Pushing {window_size}-bp Subregion**:\n"
f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n"
f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n"
f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}"
)
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
bar_img = fig_to_image(bar_fig)
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
heatmap_img = fig_to_image(heatmap_fig)
# Create CSV with k-mer SHAP values and return the file path
kmer_shap_csv = create_kmer_shap_csv(kmers, shap_values)
# State dictionary for subregion analysis
state_dict_out = {"seq": seq, "shap_means": shap_means}
return (results_text, bar_img, heatmap_img, state_dict_out, header, None, kmer_shap_csv)
###############################################################################
# 8. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################
def analyze_subregion(state, header, region_start, region_end):
if not state or "seq" not in state or "shap_means" not in state:
return ("No sequence data found. Please run Step 1 first.", None, None, None)
seq = state["seq"]
shap_means = state["shap_means"]
region_start = int(region_start)
region_end = int(region_end)
region_start = max(0, min(region_start, len(seq)))
region_end = max(0, min(region_end, len(seq)))
if region_end <= region_start:
return ("Invalid region range. End must be > Start.", None, None, None)
region_seq = seq[region_start:region_end]
region_shap = shap_means[region_start:region_end]
gc_percent = compute_gc_content(region_seq)
avg_shap = float(np.mean(region_shap))
positive_fraction = np.mean(region_shap > 0)
negative_fraction = np.mean(region_shap < 0)
if avg_shap > 0.05:
region_classification = "Likely pushing toward human"
elif avg_shap < -0.05:
region_classification = "Likely pushing toward non-human"
else:
region_classification = "Near neutral (no strong push)"
region_info = (
f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
f"Region length: {len(region_seq)} bases\n"
f"GC content: {gc_percent:.2f}%\n"
f"Average SHAP in region: {avg_shap:.4f}\n"
f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
f"Subregion interpretation: {region_classification}\n"
)
heatmap_fig = plot_linear_heatmap(shap_means, title="Subregion SHAP", start=region_start, end=region_end)
heatmap_img = fig_to_image(heatmap_fig)
hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
hist_img = fig_to_image(hist_fig)
# For demonstration, returning None for the file download as well
return (region_info, heatmap_img, hist_img, None)
###############################################################################
# 9. COMPARISON ANALYSIS FUNCTIONS
###############################################################################
def get_zero_centered_cmap():
"""Create a zero-centered blue-white-red colormap"""
colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)
def compute_shap_difference(shap1_norm, shap2_norm):
"""Compute the SHAP difference between normalized sequences"""
return shap2_norm - shap1_norm
def plot_comparative_heatmap(shap_diff, title="SHAP Difference Heatmap"):
"""
Plot heatmap using relative positions (0-100%)
"""
heatmap_data = shap_diff.reshape(1, -1)
extent = max(abs(np.min(shap_diff)), abs(np.max(shap_diff)))
fig, ax = plt.subplots(figsize=(12, 1.8))
cmap = get_zero_centered_cmap()
cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
# Create percentage-based x-axis ticks
num_ticks = 5
tick_positions = np.linspace(0, shap_diff.shape[0]-1, num_ticks)
tick_labels = [f"{int(x*100)}%" for x in np.linspace(0, 1, num_ticks)]
ax.set_xticks(tick_positions)
ax.set_xticklabels(tick_labels)
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
cbar.ax.tick_params(labelsize=8)
cbar.set_label('SHAP Difference (Seq2 - Seq1)', fontsize=9, labelpad=5)
ax.set_yticks([])
ax.set_xlabel('Relative Position in Sequence', fontsize=10)
ax.set_title(title, pad=10)
plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
return fig
def plot_shap_histogram(shap_array, title="SHAP Distribution", num_bins=30):
"""
Plot histogram of SHAP values with configurable number of bins
"""
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(shap_array, bins=num_bins, color='gray', edgecolor='black', alpha=0.7)
ax.axvline(0, color='red', linestyle='--', label='0.0')
ax.set_xlabel("SHAP Value")
ax.set_ylabel("Count")
ax.set_title(title)
ax.legend()
plt.tight_layout()
return fig
def calculate_adaptive_parameters(len1, len2):
"""
Calculate adaptive parameters based on sequence lengths and their difference.
Returns: (num_points, smooth_window, resolution_factor)
"""
length_diff = abs(len1 - len2)
max_length = max(len1, len2)
min_length = min(len1, len2)
length_ratio = min_length / max_length
# Base number of points scales with sequence length
base_points = min(2000, max(500, max_length // 100))
# Adjust parameters based on sequence properties
if length_diff < 500:
resolution_factor = 2.0
num_points = min(3000, base_points * 2)
smooth_window = max(10, length_diff // 50)
elif length_diff < 5000:
resolution_factor = 1.5
num_points = min(2000, base_points * 1.5)
smooth_window = max(20, length_diff // 100)
elif length_diff < 50000:
resolution_factor = 1.0
num_points = base_points
smooth_window = max(50, length_diff // 200)
else:
resolution_factor = 0.75
num_points = max(500, base_points // 2)
smooth_window = max(100, length_diff // 500)
# Adjust window size based on length ratio
smooth_window = int(smooth_window * (1 + (1 - length_ratio)))
return int(num_points), int(smooth_window), resolution_factor
def sliding_window_smooth(values, window_size=50):
"""
Apply sliding window smoothing with edge handling
"""
if window_size < 3:
return values
# Create window with exponential decay at edges
window = np.ones(window_size)
decay = np.exp(-np.linspace(0, 3, window_size // 2))
window[:window_size // 2] = decay
window[-(window_size // 2):] = decay[::-1]
window = window / window.sum()
# Apply convolution
smoothed = np.convolve(values, window, mode='valid')
# Handle edges
pad_size = len(values) - len(smoothed)
pad_left = pad_size // 2
pad_right = pad_size - pad_left
result = np.zeros_like(values)
result[pad_left:-pad_right] = smoothed
result[:pad_left] = values[:pad_left]
result[-pad_right:] = values[-pad_right:]
return result
def normalize_shap_lengths(shap1, shap2):
"""
Normalize and smooth SHAP values with dynamic adaptation
"""
# Calculate adaptive parameters
num_points, smooth_window, _ = calculate_adaptive_parameters(len(shap1), len(shap2))
# Apply initial smoothing
shap1_smooth = sliding_window_smooth(shap1, smooth_window)
shap2_smooth = sliding_window_smooth(shap2, smooth_window)
# Create relative positions and interpolate
x1 = np.linspace(0, 1, len(shap1_smooth))
x2 = np.linspace(0, 1, len(shap2_smooth))
x_norm = np.linspace(0, 1, num_points)
shap1_interp = np.interp(x_norm, x1, shap1_smooth)
shap2_interp = np.interp(x_norm, x2, shap2_smooth)
return shap1_interp, shap2_interp, smooth_window
def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
"""
Compare two sequences with adaptive parameters and visualization
"""
try:
# Analyze first sequence
res1 = analyze_sequence(file1, top_kmers=10, fasta_text=fasta1, window_size=500)
if isinstance(res1[0], str) and "Error" in res1[0]:
return (f"Error in sequence 1: {res1[0]}", None, None, None)
# Analyze second sequence
res2 = analyze_sequence(file2, top_kmers=10, fasta_text=fasta2, window_size=500)
if isinstance(res2[0], str) and "Error" in res2[0]:
return (f"Error in sequence 2: {res2[0]}", None, None, None)
# Extract SHAP values and sequence info
shap1 = res1[3]["shap_means"]
shap2 = res2[3]["shap_means"]
# Calculate sequence properties
len1, len2 = len(shap1), len(shap2)
length_diff = abs(len1 - len2)
length_ratio = min(len1, len2) / max(len1, len2)
# Normalize and compare sequences
shap1_norm, shap2_norm, smooth_window = normalize_shap_lengths(shap1, shap2)
shap_diff = compute_shap_difference(shap1_norm, shap2_norm)
# Calculate adaptive threshold and statistics
base_threshold = 0.05
adaptive_threshold = base_threshold * (1 + (1 - length_ratio))
if length_diff > 50000:
adaptive_threshold *= 1.5
# Calculate comparison statistics
avg_diff = np.mean(shap_diff)
std_diff = np.std(shap_diff)
max_diff = np.max(shap_diff)
min_diff = np.min(shap_diff)
substantial_diffs = np.abs(shap_diff) > adaptive_threshold
frac_different = np.mean(substantial_diffs)
# Extract classifications
try:
classification1 = res1[0].split('Classification: ')[1].split('\n')[0].strip()
classification2 = res2[0].split('Classification: ')[1].split('\n')[0].strip()
except:
classification1 = "Unknown"
classification2 = "Unknown"
# Format output text
comparison_text = (
"Sequence Comparison Results:\n"
f"Sequence 1: {res1[4]}\n"
f"Length: {len1:,} bases\n"
f"Classification: {classification1}\n\n"
f"Sequence 2: {res2[4]}\n"
f"Length: {len2:,} bases\n"
f"Classification: {classification2}\n\n"
"Comparison Parameters:\n"
f"Length Difference: {length_diff:,} bases\n"
f"Length Ratio: {length_ratio:.3f}\n"
f"Smoothing Window: {smooth_window} points\n"
f"Adaptive Threshold: {adaptive_threshold:.3f}\n\n"
"Statistics:\n"
f"Average SHAP difference: {avg_diff:.4f}\n"
f"Standard deviation: {std_diff:.4f}\n"
f"Max difference: {max_diff:.4f} (Seq2 more human-like)\n"
f"Min difference: {min_diff:.4f} (Seq1 more human-like)\n"
f"Fraction with substantial differences: {frac_different:.2%}\n\n"
"Note: All parameters automatically adjusted based on sequence properties\n\n"
"Interpretation:\n"
"- Red regions: Sequence 2 more human-like\n"
"- Blue regions: Sequence 1 more human-like\n"
"- White regions: Similar between sequences"
)
# Generate visualizations
heatmap_fig = plot_comparative_heatmap(
shap_diff,
title=f"SHAP Difference Heatmap (window: {smooth_window})"
)
heatmap_img = fig_to_image(heatmap_fig)
# Create histogram with adaptive bins
num_bins = max(20, min(50, int(np.sqrt(len(shap_diff)))))
hist_fig = plot_shap_histogram(
shap_diff,
title="Distribution of SHAP Differences",
num_bins=num_bins
)
hist_img = fig_to_image(hist_fig)
# Return 4 outputs (text, image, image, and a file or None for the last)
return (comparison_text, heatmap_img, hist_img, None)
except Exception as e:
error_msg = f"Error during sequence comparison: {str(e)}"
return (error_msg, None, None, None)
###############################################################################
# 11. GENE FEATURE ANALYSIS
###############################################################################
import io
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import pandas as pd
import tempfile
import os
from typing import List, Dict, Tuple, Optional, Any
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
def parse_gene_features(text: str) -> List[Dict[str, Any]]:
"""Parse gene features from text file in FASTA-like format"""
genes = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
genes.append({
'header': current_header,
'sequence': ''.join(current_sequence),
'metadata': parse_gene_metadata(current_header)
})
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
genes.append({
'header': current_header,
'sequence': ''.join(current_sequence),
'metadata': parse_gene_metadata(current_header)
})
return genes
def parse_gene_metadata(header: str) -> Dict[str, str]:
"""Extract metadata from gene header"""
metadata = {}
parts = header.split()
for part in parts:
if '[' in part and ']' in part:
key_value = part[1:-1].split('=', 1)
if len(key_value) == 2:
metadata[key_value[0]] = key_value[1]
return metadata
def parse_location(location_str: str) -> Tuple[Optional[int], Optional[int]]:
"""Parse gene location string, handling both forward and complement strands"""
try:
# Remove 'complement(' and ')' if present
clean_loc = location_str.replace('complement(', '').replace(')', '')
# Split on '..' and convert to integers
if '..' in clean_loc:
start, end = map(int, clean_loc.split('..'))
return start, end
else:
return None, None
except Exception as e:
print(f"Error parsing location {location_str}: {str(e)}")
return None, None
def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
"""Compute statistical measures for gene SHAP values"""
return {
'avg_shap': float(np.mean(gene_shap)),
'median_shap': float(np.median(gene_shap)),
'std_shap': float(np.std(gene_shap)),
'max_shap': float(np.max(gene_shap)),
'min_shap': float(np.min(gene_shap)),
'pos_fraction': float(np.mean(gene_shap > 0))
}
def create_simple_genome_diagram(gene_results: List[Dict[str, Any]], genome_length: int) -> Image.Image:
"""
Create a simple genome diagram using PIL, forcing a minimum color intensity
so that small SHAP values don't appear white.
"""
from PIL import Image, ImageDraw, ImageFont
# Validate inputs
if not gene_results or genome_length <= 0:
img = Image.new('RGB', (800, 100), color='white')
draw = ImageDraw.Draw(img)
draw.text((10, 40), "Error: Invalid input data", fill='black')
return img
# Ensure all gene coordinates are valid integers
for gene in gene_results:
gene['start'] = max(0, int(gene['start']))
gene['end'] = min(genome_length, int(gene['end']))
if gene['start'] >= gene['end']:
print(f"Warning: Invalid coordinates for gene {gene.get('gene_name','?')}: {gene['start']}-{gene['end']}")
# Image dimensions
width = 1500
height = 600
margin = 50
track_height = 40
# Create image with white background
img = Image.new('RGB', (width, height), 'white')
draw = ImageDraw.Draw(img)
# Try to load font, fall back to default if unavailable
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 12)
title_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
except:
font = ImageFont.load_default()
title_font = ImageFont.load_default()
# Draw title
draw.text((margin, margin // 2), "Genome SHAP Analysis", fill='black', font=title_font or font)
# Draw genome line
line_y = height // 2
draw.line([(int(margin), int(line_y)), (int(width - margin), int(line_y))], fill='black', width=2)
# Calculate scale factor
scale = float(width - 2 * margin) / float(genome_length)
# Determine a reasonable step for scale markers
num_ticks = 10
if genome_length < num_ticks:
step = 1
else:
step = genome_length // num_ticks
# Draw scale markers
for i in range(0, genome_length + 1, step):
x_coord = margin + i * scale
draw.line([
(int(x_coord), int(line_y - 5)),
(int(x_coord), int(line_y + 5))
], fill='black', width=1)
draw.text((int(x_coord - 20), int(line_y + 10)), f"{i:,}", fill='black', font=font)
# Sort genes by absolute SHAP value for drawing
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']))
# Draw genes
for idx, gene in enumerate(sorted_genes):
# Calculate position and ensure integers
start_x = margin + int(gene['start'] * scale)
end_x = margin + int(gene['end'] * scale)
# Calculate color based on SHAP value
avg_shap = gene['avg_shap']
# Convert shap -> color intensity (0 to 255)
# Then clamp to a minimum intensity so it never ends up plain white
intensity = int(abs(avg_shap) * 500)
intensity = max(50, min(255, intensity)) # clamp between 50 and 255
if avg_shap > 0:
# Red-ish for positive
color = (255, 255 - intensity, 255 - intensity)
else:
# Blue-ish for negative or zero
color = (255 - intensity, 255 - intensity, 255)
# Draw gene rectangle
draw.rectangle([
(int(start_x), int(line_y - track_height // 2)),
(int(end_x), int(line_y + track_height // 2))
], fill=color, outline='black')
# Prepare gene name label
label = str(gene.get('gene_name','?'))
# Fallback for label size
label_mask = font.getmask(label)
label_width, label_height = label_mask.size
# Alternate label positions
if idx % 2 == 0:
text_y = line_y - track_height - 15
else:
text_y = line_y + track_height + 5
# Decide whether to rotate text based on space
gene_width = end_x - start_x
if gene_width > label_width:
text_x = start_x + (gene_width - label_width) // 2
draw.text((int(text_x), int(text_y)), label, fill='black', font=font)
elif gene_width > 20:
txt_img = Image.new('RGBA', (label_width, label_height), (255, 255, 255, 0))
txt_draw = ImageDraw.Draw(txt_img)
txt_draw.text((0, 0), label, font=font, fill='black')
rotated_img = txt_img.rotate(90, expand=True)
img.paste(rotated_img, (int(start_x), int(text_y)), rotated_img)
# Draw legend
legend_x = margin
legend_y = height - margin
draw.text((int(legend_x), int(legend_y - 60)), "SHAP Values:", fill='black', font=font)
# Draw legend boxes
box_width = 20
box_height = 20
spacing = 15
# Strong human-like
draw.rectangle([
(int(legend_x), int(legend_y - 45)),
(int(legend_x + box_width), int(legend_y - 45 + box_height))
], fill=(255, 0, 0), outline='black')
draw.text((int(legend_x + box_width + spacing), int(legend_y - 45)),
"Strong human-like signal", fill='black', font=font)
# Weak human-like
draw.rectangle([
(int(legend_x), int(legend_y - 20)),
(int(legend_x + box_width), int(legend_y - 20 + box_height))
], fill=(255, 200, 200), outline='black')
draw.text((int(legend_x + box_width + spacing), int(legend_y - 20)),
"Weak human-like signal", fill='black', font=font)
# Weak non-human-like
draw.rectangle([
(int(legend_x + 250), int(legend_y - 45)),
(int(legend_x + 250 + box_width), int(legend_y - 45 + box_height))
], fill=(200, 200, 255), outline='black')
draw.text((int(legend_x + 250 + box_width + spacing), int(legend_y - 45)),
"Weak non-human-like signal", fill='black', font=font)
# Strong non-human-like
draw.rectangle([
(int(legend_x + 250), int(legend_y - 20)),
(int(legend_x + 250 + box_width), int(legend_y - 20 + box_height))
], fill=(0, 0, 255), outline='black')
draw.text((int(legend_x + 250 + box_width + spacing), int(legend_y - 20)),
"Strong non-human-like signal", fill='black', font=font)
return img
def analyze_gene_features(sequence_file: str,
features_file: str,
fasta_text: str = "",
features_text: str = "") -> Tuple[str, Optional[str], Optional[Image.Image]]:
"""Analyze SHAP values for each gene feature"""
# First analyze whole sequence
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
return f"Error in sequence analysis: {sequence_results[0]}", None, None
# Get SHAP values
shap_means = sequence_results[3]["shap_means"]
# Parse gene features
try:
if features_text.strip():
genes = parse_gene_features(features_text)
else:
with open(features_file, 'r') as f:
genes = parse_gene_features(f.read())
except Exception as e:
return f"Error reading features file: {str(e)}", None, None
# Analyze each gene
gene_results = []
for gene in genes:
try:
location = gene['metadata'].get('location', '')
if not location:
continue
start, end = parse_location(location)
if start is None or end is None:
continue
# Get SHAP values for this region
gene_shap = shap_means[start:end]
stats = compute_gene_statistics(gene_shap)
gene_results.append({
'gene_name': gene['metadata'].get('gene', 'Unknown'),
'location': location,
'start': start,
'end': end,
'locus_tag': gene['metadata'].get('locus_tag', ''),
'avg_shap': stats['avg_shap'],
'median_shap': stats['median_shap'],
'std_shap': stats['std_shap'],
'max_shap': stats['max_shap'],
'min_shap': stats['min_shap'],
'pos_fraction': stats['pos_fraction'],
'classification': 'Human' if stats['avg_shap'] > 0 else 'Non-human',
'confidence': abs(stats['avg_shap'])
})
except Exception as e:
print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
continue
if not gene_results:
return "No valid genes could be processed", None, None
# Sort genes by absolute SHAP value
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']), reverse=True)
# Create results text
results_text = "Gene Analysis Results:\n\n"
results_text += f"Total genes analyzed: {len(gene_results)}\n"
results_text += f"Human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Human')}\n"
results_text += f"Non-human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Non-human')}\n\n"
results_text += "Top 10 most distinctive genes:\n"
for gene in sorted_genes[:10]:
results_text += (
f"Gene: {gene['gene_name']}\n"
f"Location: {gene['location']}\n"
f"Classification: {gene['classification']} "
f"(confidence: {gene['confidence']:.4f})\n"
f"Average SHAP: {gene['avg_shap']:.4f}\n\n"
)
# Create CSV content
csv_content = "gene_name,location,avg_shap,median_shap,std_shap,max_shap,min_shap,"
csv_content += "pos_fraction,classification,confidence,locus_tag\n"
for gene in gene_results:
csv_content += (
f"{gene['gene_name']},{gene['location']},{gene['avg_shap']:.4f},"
f"{gene['median_shap']:.4f},{gene['std_shap']:.4f},{gene['max_shap']:.4f},"
f"{gene['min_shap']:.4f},{gene['pos_fraction']:.4f},{gene['classification']},"
f"{gene['confidence']:.4f},{gene['locus_tag']}\n"
)
# Save CSV to temp file
try:
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, f"gene_analysis_{os.urandom(4).hex()}.csv")
with open(temp_path, 'w') as f:
f.write(csv_content)
except Exception as e:
print(f"Error saving CSV: {str(e)}")
temp_path = None
# Create visualization
try:
diagram_img = create_simple_genome_diagram(gene_results, len(shap_means))
except Exception as e:
print(f"Error creating visualization: {str(e)}")
# Create error image
diagram_img = Image.new('RGB', (800, 100), color='white')
draw = ImageDraw.Draw(diagram_img)
draw.text((10, 40), f"Error creating visualization: {str(e)}", fill='black')
return results_text, temp_path, diagram_img
###############################################################################
# 12. DOWNLOAD FUNCTIONS
###############################################################################
def prepare_csv_download(data, filename="analysis_results.csv"):
"""Prepare CSV data for download"""
if isinstance(data, str):
return data.encode(), filename
elif isinstance(data, (list, dict)):
import csv
from io import StringIO
output = StringIO()
writer = csv.DictWriter(output, fieldnames=data[0].keys())
writer.writeheader()
writer.writerows(data)
return output.getvalue().encode(), filename
else:
raise ValueError("Unsupported data type for CSV download")
###############################################################################
# 14. BUILD GRADIO INTERFACE
###############################################################################
def load_example_fasta():
"""Load the example.fasta file contents"""
try:
with open('example.fasta', 'r') as f:
example_text = f.read()
return example_text
except Exception as e:
return f">example_sequence\nACGTACGT...\n\n(Note: Could not load example.fasta: {str(e)})"
###############################################################################
# 14. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.download-button {
margin-top: 10px;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
**Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.
**Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.
**Step 3**: Analyze gene features and their contributions.
**Step 4**: Compare sequences and analyze differences.
**Color Scale**: Negative SHAP = Blue, Zero = White, Positive SHAP = Red.
""")
with gr.Tab("1) Full-Sequence Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
text_input = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
# Add example FASTA button in a row
with gr.Row():
example_btn = gr.Button("Load Example FASTA", variant="secondary")
top_k = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Number of top k-mers to display")
win_size = gr.Slider(minimum=100, maximum=5000, value=500, step=100, label="Window size for 'most pushing' subregions")
analyze_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(label="Classification Results", lines=12, interactive=False)
kmer_img = gr.Image(label="Top k-mer SHAP")
genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)")
# File components with the correct type parameter
download_kmer_shap = gr.File(label="Download k-mer SHAP Values (CSV)", visible=True, type="filepath")
download_results = gr.File(label="Download Results", visible=True, elem_classes="download-button")
seq_state = gr.State()
header_state = gr.State()
# Event handlers
# Connect the example button
example_btn.click(
load_example_fasta,
inputs=[],
outputs=[text_input]
)
# Connect the analyze button
analyze_btn.click(
analyze_sequence,
inputs=[file_input, top_k, text_input, win_size],
outputs=[results_box, kmer_img, genome_img, seq_state, header_state, download_results, download_kmer_shap]
)
with gr.Tab("2) Subregion Exploration"):
gr.Markdown("""
**Subregion Analysis**
Select start/end positions to view local SHAP signals, distribution, GC content, etc.
The heatmap uses the same Blue-White-Red scale.
""")
with gr.Row():
region_start = gr.Number(label="Region Start", value=0)
region_end = gr.Number(label="Region End", value=500)
region_btn = gr.Button("Analyze Subregion")
subregion_info = gr.Textbox(label="Subregion Analysis", lines=7, interactive=False)
with gr.Row():
subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)")
subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
download_subregion = gr.File(label="Download Subregion Analysis", visible=False, elem_classes="download-button")
region_btn.click(
analyze_subregion,
inputs=[seq_state, header_state, region_start, region_end],
outputs=[subregion_info, subregion_img, subregion_hist_img, download_subregion]
)
with gr.Tab("3) Gene Features Analysis"):
gr.Markdown("""
**Analyze Gene Features**
Upload a FASTA file and corresponding gene features file to analyze SHAP values per gene.
Gene features should be in the format:
>gene_name [gene=X] [locus_tag=Y] [location=start..end] or [location=complement(start..end)]
SEQUENCE
The genome viewer will show genes color-coded by their contribution:
- Red: Genes pushing toward human origin
- Blue: Genes pushing toward non-human origin
- Color intensity indicates strength of signal
""")
with gr.Row():
with gr.Column(scale=1):
gene_fasta_file = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
gene_fasta_text = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
with gr.Column(scale=1):
features_file = gr.File(label="Upload gene features file", file_types=[".txt"], type="filepath")
features_text = gr.Textbox(label="Or paste gene features", placeholder=">gene_1 [gene=U12]...\nACGT...", lines=5)
analyze_genes_btn = gr.Button("Analyze Gene Features", variant="primary")
gene_results = gr.Textbox(label="Gene Analysis Results", lines=12, interactive=False)
gene_diagram = gr.Image(label="Genome Diagram with Gene Features")
download_gene_results = gr.File(label="Download Gene Analysis (CSV)", visible=True, type="filepath")
analyze_genes_btn.click(
analyze_gene_features,
inputs=[gene_fasta_file, features_file, gene_fasta_text, features_text],
outputs=[gene_results, download_gene_results, gene_diagram]
)
with gr.Tab("4) Comparative Analysis"):
gr.Markdown("""
**Compare Two Sequences**
Upload or paste two FASTA sequences to compare their SHAP patterns.
The sequences will be normalized to the same length for comparison.
**Color Scale**:
- Red: Sequence 2 more human-like
- Blue: Sequence 1 more human-like
- White: No substantial difference
""")
with gr.Row():
with gr.Column(scale=1):
file_input1 = gr.File(label="Upload first FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
text_input1 = gr.Textbox(label="Or paste first FASTA sequence", placeholder=">sequence1\nACGTACGT...", lines=5)
with gr.Column(scale=1):
file_input2 = gr.File(label="Upload second FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
text_input2 = gr.Textbox(label="Or paste second FASTA sequence", placeholder=">sequence2\nACGTACGT...", lines=5)
compare_btn = gr.Button("Compare Sequences", variant="primary")
comparison_text = gr.Textbox(label="Comparison Results", lines=12, interactive=False)
with gr.Row():
diff_heatmap = gr.Image(label="SHAP Difference Heatmap")
diff_hist = gr.Image(label="Distribution of SHAP Differences")
download_comparison = gr.File(label="Download Comparison Results", visible=False, elem_classes="download-button")
compare_btn.click(
analyze_sequence_comparison,
inputs=[file_input1, file_input2, text_input1, text_input2],
outputs=[comparison_text, diff_heatmap, diff_hist, download_comparison]
)
gr.Markdown("""
### Interface Features
- **Overall Classification** (human vs non-human) using k-mer frequencies
- **SHAP Analysis** shows which k-mers push classification toward or away from human
- **White-Centered SHAP Gradient**:
- Negative (blue), 0 (white), Positive (red)
- Symmetrical color range around 0
- **Identify Subregions** with strongest push for human or non-human
- **Gene Feature Analysis**:
- Analyze individual genes' contributions
- Interactive genome viewer
- Gene-level statistics and classification
- **Sequence Comparison**:
- Compare two sequences to identify regions of difference
- Normalized comparison to handle different lengths
- Statistical summary of differences
- **Data Export**:
- Download results as CSV files
- Download k-mer SHAP values
- Save analysis outputs for further processing
""")
if __name__ == "__main__":
iface.launch() |