File size: 27,021 Bytes
4fea465 1b65314 4fea465 b00e12c aca8922 b00e12c 3c68821 b00e12c 02db263 b00e12c 9225e86 cb65982 3c68821 9225e86 83fd361 564a5c5 2a23e85 564a5c5 9fdf8bc 564a5c5 6cb20fb 2a23e85 564a5c5 0887f00 564a5c5 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 564a5c5 6cbef76 bea11e6 e83787f 3c68821 b00e12c ea05641 abf5f3c 564a5c5 b00e12c abf5f3c 4fea465 abf5f3c b00e12c abf5f3c b00e12c abf5f3c b00e12c abf5f3c b00e12c abf5f3c b00e12c abf5f3c 6cbef76 bea11e6 ea05641 3c68821 b00e12c abf5f3c b00e12c abf5f3c 4fea465 bea11e6 abf5f3c b00e12c abf5f3c b00e12c abf5f3c bea11e6 abf5f3c 4fea465 abf5f3c 4fea465 9225e86 abf5f3c 1b65314 9225e86 abf5f3c 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 c0c5360 9225e86 43b0caa ea05641 3c68821 b00e12c ea05641 bea11e6 43b0caa bea11e6 665754b abf5f3c 4fea465 564a5c5 b00e12c 564a5c5 b00e12c 564a5c5 bf287f9 e561533 b59e9c0 5412668 61e5f12 4fea465 9225e86 89fb9c8 d579507 89fb9c8 4fea465 2a23e85 e83787f 89fb9c8 4fea465 e83787f 4fea465 e83787f 4fea465 abf5f3c 4fea465 abf5f3c 4fea465 61e5f12 4fea465 ab04b21 61e5f12 89fb9c8 4fea465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# gradio demo
# --------------------------------------------------------
import os
import sys
sys.path.append(os.path.abspath('./modules'))
import math
import tempfile
import gradio
import torch
import spaces
import numpy as np
import functools
import trimesh
import copy
from PIL import Image
from scipy.spatial.transform import Rotation
from modules.pe3r.images import Images
from modules.dust3r.inference import inference
from modules.dust3r.image_pairs import make_pairs
from modules.dust3r.utils.image import load_images, rgb
from modules.dust3r.utils.device import to_numpy
from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from copy import deepcopy
import cv2
from typing import Any, Dict, Generator,List
import matplotlib.pyplot as pl
from modules.mobilesamv2.utils.transforms import ResizeLongestSide
# from modules.pe3r.models import Models
import torchvision.transforms as tvf
sys.path.append(os.path.abspath('./modules/ultralytics'))
from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
# from modules.mast3r.model import AsymmetricMASt3R
# from modules.sam2.build_sam import build_sam2_video_predictor
from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
from modules.mobilesamv2 import sam_model_registry
from sam2.sam2_video_predictor import SAM2VideoPredictor
from modules.mast3r.model import AsymmetricMASt3R
silent = False
device = 'cuda' if torch.cuda.is_available() else 'cpu' #'cpu' #
# pe3r = Models('cpu') # 'cpu' #
# print(device)
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
outfile = os.path.join(outdir, 'scene.glb')
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = scene.ori_imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size)
def mask_nms(masks, threshold=0.8):
keep = []
mask_num = len(masks)
suppressed = np.zeros((mask_num), dtype=np.int64)
for i in range(mask_num):
if suppressed[i] == 1:
continue
keep.append(i)
for j in range(i + 1, mask_num):
if suppressed[j] == 1:
continue
intersection = (masks[i] & masks[j]).sum()
if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
suppressed[j] = 1
return keep
def filter(masks, keep):
ret = []
for i, m in enumerate(masks):
if i in keep: ret.append(m)
return ret
def mask_to_box(mask):
if mask.sum() == 0:
return np.array([0, 0, 0, 0])
# Get the rows and columns where the mask is 1
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
# Get top, bottom, left, right edges
top = np.argmax(rows)
bottom = len(rows) - 1 - np.argmax(np.flip(rows))
left = np.argmax(cols)
right = len(cols) - 1 - np.argmax(np.flip(cols))
return np.array([left, top, right, bottom])
def box_xyxy_to_xywh(box_xyxy):
box_xywh = deepcopy(box_xyxy)
box_xywh[2] = box_xywh[2] - box_xywh[0]
box_xywh[3] = box_xywh[3] - box_xywh[1]
return box_xywh
def get_seg_img(mask, box, image):
image = image.copy()
x, y, w, h = box
# image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
box_area = w * h
mask_area = mask.sum()
if 1 - (mask_area / box_area) < 0.2:
image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
else:
random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
image[mask == 0] = random_values[mask == 0]
seg_img = image[y:y+h, x:x+w, ...]
return seg_img
def pad_img(img):
h, w, _ = img.shape
l = max(w,h)
pad = np.zeros((l,l,3), dtype=np.uint8) #
if h > w:
pad[:,(h-w)//2:(h-w)//2 + w, :] = img
else:
pad[(w-h)//2:(w-h)//2 + h, :, :] = img
return pad
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
assert len(args) > 0 and all(
len(a) == len(args[0]) for a in args
), "Batched iteration must have inputs of all the same size."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
def slerp(u1, u2, t):
"""
Perform spherical linear interpolation (Slerp) between two unit vectors.
Args:
- u1 (torch.Tensor): First unit vector, shape (1024,)
- u2 (torch.Tensor): Second unit vector, shape (1024,)
- t (float): Interpolation parameter
Returns:
- torch.Tensor: Interpolated vector, shape (1024,)
"""
# Compute the dot product
dot_product = torch.sum(u1 * u2)
# Ensure the dot product is within the valid range [-1, 1]
dot_product = torch.clamp(dot_product, -1.0, 1.0)
# Compute the angle between the vectors
theta = torch.acos(dot_product)
# Compute the coefficients for the interpolation
sin_theta = torch.sin(theta)
if sin_theta == 0:
# Vectors are parallel, return a linear interpolation
return u1 + t * (u2 - u1)
s1 = torch.sin((1 - t) * theta) / sin_theta
s2 = torch.sin(t * theta) / sin_theta
# Perform the interpolation
return s1 * u1 + s2 * u2
def slerp_multiple(vectors, t_values):
"""
Perform spherical linear interpolation (Slerp) for multiple vectors.
Args:
- vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
- a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
Returns:
- torch.Tensor: Interpolated vector, shape (1024,)
"""
n = vectors.shape[0]
# Initialize the interpolated vector with the first vector
interpolated_vector = vectors[0]
# Perform Slerp iteratively
for i in range(1, n):
# Perform Slerp between the current interpolated vector and the next vector
t = t_values[i] / (t_values[i] + t_values[i-1])
interpolated_vector = slerp(interpolated_vector, vectors[i], t)
return interpolated_vector
@torch.no_grad
def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
sam_mask=[]
img_area = original_size[0] * original_size[1]
obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
input_boxes1 = obj_results[0].boxes.xyxy
input_boxes1 = input_boxes1.cpu().numpy()
input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
input_boxes = torch.from_numpy(input_boxes1).to(device)
# obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
# input_boxes2 = obj_results[0].boxes.xyxy
# input_boxes2 = input_boxes2.cpu().numpy()
# input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
# input_boxes2 = torch.from_numpy(input_boxes2).to(device)
# input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
input_image = mobilesamv2.preprocess(sam1_image)
image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
for (boxes,) in batch_iterator(320, input_boxes):
with torch.no_grad():
image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
points=None,
boxes=boxes,
masks=None,)
low_res_masks, _ = mobilesamv2.mask_decoder(
image_embeddings=image_embedding,
image_pe=prompt_embedding,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
simple_type=True,
)
low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
for mask in sam_mask_pre:
if mask.sum() / img_area > 0.002:
sam_mask.append(mask.squeeze(1))
sam_mask=torch.cat(sam_mask)
sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
keep = mask_nms(sorted_sam_mask)
ret_mask = filter(sorted_sam_mask, keep)
return ret_mask
@torch.no_grad
def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
cog_seg_maps = []
rev_cog_seg_maps = []
inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
mask_num = 0
sam1_images = images.sam1_images
sam1_images_size = images.sam1_images_size
np_images = images.np_images
np_images_size = images.np_images_size
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
for mask in sam1_masks:
_, _, _ = sam2.add_new_mask(
inference_state=inference_state,
frame_idx=0,
obj_id=mask_num,
mask=mask,
)
mask_num += 1
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state):
sam2_masks = (out_mask_logits > 0.0).squeeze(1)
video_segments[out_frame_idx] = {
out_obj_id: sam2_masks[i].cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
if out_frame_idx == 0:
continue
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
for sam1_mask in sam1_masks:
flg = 1
for sam2_mask in sam2_masks:
# print(sam1_mask.shape, sam2_mask.shape)
area1 = sam1_mask.sum()
area2 = sam2_mask.sum()
intersection = (sam1_mask & sam2_mask).sum()
if min(intersection / area1, intersection / area2) > 0.25:
flg = 0
break
if flg:
video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
mask_num += 1
multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
multi_view_clip_feats_map = {}
multi_view_clip_area_map = {}
for now_frame in range(0, len(video_segments), 1):
image = np_images[now_frame]
seg_img_list = []
out_obj_id_list = []
out_obj_mask_list = []
out_obj_area_list = []
# NOTE: background: -1
rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
for out_obj_id, mask in sorted_dict_items:
if mask.sum() == 0:
continue
rev_seg_map[mask] = out_obj_id
rev_cog_seg_maps.append(rev_seg_map)
seg_map = -np.ones(image.shape[:2], dtype=np.int64)
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
for out_obj_id, mask in sorted_dict_items:
if mask.sum() == 0:
continue
box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
if box[2] == 0 and box[3] == 0:
continue
# print(box)
seg_img = get_seg_img(mask, box, image)
pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
seg_img_list.append(pad_seg_img)
seg_map[mask] = out_obj_id
out_obj_id_list.append(out_obj_id)
out_obj_area_list.append(np.count_nonzero(mask))
out_obj_mask_list.append(mask)
if len(seg_img_list) == 0:
cog_seg_maps.append(seg_map)
continue
seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
inputs = siglip_processor(images=seg_imgs, return_tensors="pt")
inputs = {key: value.to(device) for key, value in inputs.items()}
image_features = siglip.get_image_features(**inputs)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
image_features = image_features.detach().cpu()
for i in range(len(out_obj_mask_list)):
for j in range(i + 1, len(out_obj_mask_list)):
mask1 = out_obj_mask_list[i]
mask2 = out_obj_mask_list[j]
intersection = np.logical_and(mask1, mask2).sum()
area1 = out_obj_area_list[i]
area2 = out_obj_area_list[j]
if min(intersection / area1, intersection / area2) > 0.025:
conf1 = area1 / (area1 + area2)
# conf2 = area2 / (area1 + area2)
image_features[j] = slerp(image_features[j], image_features[i], conf1)
for i, clip_feat in enumerate(image_features):
id = out_obj_id_list[i]
if id in multi_view_clip_feats_map.keys():
multi_view_clip_feats_map[id].append(clip_feat)
multi_view_clip_area_map[id].append(out_obj_area_list[i])
else:
multi_view_clip_feats_map[id] = [clip_feat]
multi_view_clip_area_map[id] = [out_obj_area_list[i]]
cog_seg_maps.append(seg_map)
del image_features
for i in range(mask_num):
if i in multi_view_clip_feats_map.keys():
clip_feats = multi_view_clip_feats_map[i]
mask_area = multi_view_clip_area_map[i]
multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
else:
multi_view_clip_feats[i] = torch.zeros((1024))
multi_view_clip_feats[mask_num] = torch.zeros((1024))
return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
@spaces.GPU(duration=60)
def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid):
"""
from a list of images, run dust3r inference, global aligner.
then run get_3D_model_from_scene
"""
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
image_encoder = sam1.vision_encoder
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
mobilesamv2.prompt_encoder = prompt_encoder
mobilesamv2.mask_decoder = mask_decoder
mobilesamv2.image_encoder=image_encoder
mobilesamv2.to(device=device)
mobilesamv2.eval()
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
yolov8 = ObjectAwareModel(YOLO8_CKP)
if len(filelist) < 2:
raise gradio.Error("Please input at least 2 images.")
images = Images(filelist=filelist, device=device)
# try:
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
# except Exception as e:
# rev_cog_seg_maps = []
# for tmp_img in images.np_images:
# rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
# rev_cog_seg_maps.append(rev_seg_map)
# cog_seg_maps = rev_cog_seg_maps
# cog_feats = torch.zeros((1, 1024))
# imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
lr = 0.01
# if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
try:
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
for i in range(len(imgs)):
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
ori_imgs = scene.ori_imgs
lr = 0.01
# if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr)
except Exception as e:
scene = scene_1
scene.imgs = ori_imgs
scene.ori_imgs = ori_imgs
print(e)
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size)
scene.to('cpu')
torch.cuda.empty_cache()
return scene, outfile
# @spaces.GPU(duration=60)
# def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
# mask_sky, clean_depth, transparent_cams, cam_size):
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256")
# siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
# texts = [text]
# inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
# inputs = {key: value.to(device) for key, value in inputs.items()}
# with torch.no_grad():
# text_feats =siglip.get_text_features(**inputs)
# text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
# scene.render_image(text_feats, threshold)
# scene.ori_imgs = scene.rendered_imgs
# outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size)
# return outfile
with tempfile.TemporaryDirectory(suffix='pe3r_gradio_demo') as tmpdirname:
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
# get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
scene = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
with gradio.Row():
schedule = gradio.Dropdown(["linear", "cosine"],
value='linear', label="schedule", info="For global alignment!",
visible=False)
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000,
label="num_iterations", info="For global alignment!",
visible=False)
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"),
("swin: sliding window", "swin"),
("oneref: match one image with all", "oneref")],
value='complete', label="Scenegraph",
info="Define how to make pairs",
interactive=True,
visible=False)
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
minimum=1, maximum=1, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
run_btn = gradio.Button("Reconstruct")
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1, visible=False)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001, visible=False)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud", visible=False)
# two post process implemented
mask_sky = gradio.Checkbox(value=False, label="Mask sky", visible=False)
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps", visible=False)
transparent_cams = gradio.Checkbox(value=True, label="Transparent cameras", visible=False)
with gradio.Row():
text_input = gradio.Textbox(label="Query Text")
threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
find_btn = gradio.Button("Find")
outmodel = gradio.Model3D()
# events
run_btn.click(fn=recon_fun,
inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud,
mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid],
outputs=[scene, outmodel]) # , outgallery
# find_btn.click(fn=get_3D_object_from_scene_fun,
# inputs=[text_input, threshold, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size],
# outputs=outmodel)
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
|