File size: 26,743 Bytes
1b65314 3d8bebe 4fea465 3d8bebe 4fea465 399850e 4fea465 3d8bebe 4fea465 3d8bebe aca8922 3d8bebe b00e12c 3d8bebe b00e12c 3d8bebe b00e12c 3d8bebe 02db263 b00e12c 5505892 9225e86 cb65982 ba148f1 3c68821 9225e86 83fd361 564a5c5 2a23e85 564a5c5 9fdf8bc 564a5c5 6cb20fb 2768473 2a23e85 564a5c5 0887f00 564a5c5 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 564a5c5 3d8bebe e83787f 3d8bebe b00e12c ea05641 3d8bebe 564a5c5 3d8bebe 4fea465 3d8bebe ba148f1 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 1b65314 3d8bebe 4fea465 3d8bebe 4fea465 3d8bebe 4fea465 c0c5360 5505892 4e886ce ba148f1 43b0caa ea05641 ba148f1 3c68821 b00e12c ea05641 3d8bebe bea11e6 6a67e40 bea11e6 3d8bebe bea11e6 3d8bebe bea11e6 3d8bebe bea11e6 43b0caa 3d8bebe ba148f1 3d8bebe 4fea465 564a5c5 b00e12c 564a5c5 b00e12c 564a5c5 bf287f9 e561533 5412668 3d8bebe 5505892 8a50897 5505892 8a50897 5505892 e22545f 5505892 3d8bebe 5808a3d 5505892 2768473 5505892 6a67e40 2768473 5505892 2768473 4fea465 399850e 4fea465 399850e 5505892 399850e 5505892 8bcfdbb 399850e 5505892 399850e 5505892 399850e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
import os
import sys
sys.path.append(os.path.abspath('./modules'))
import math
import tempfile
import gradio
import torch
import spaces
import numpy as np
import functools
import trimesh
import copy
from PIL import Image
from scipy.spatial.transform import Rotation
from modules.pe3r.images import Images
from modules.dust3r.inference import inference
from modules.dust3r.image_pairs import make_pairs
from modules.dust3r.utils.image import load_images #, rgb
from modules.dust3r.utils.device import to_numpy
from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from copy import deepcopy
import cv2
from typing import Any, Dict, Generator,List
import matplotlib.pyplot as pl
from modules.mobilesamv2.utils.transforms import ResizeLongestSide
from modules.pe3r.models import Models
import torchvision.transforms as tvf
sys.path.append(os.path.abspath('./modules/ultralytics'))
from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
from modules.mast3r.model import AsymmetricMASt3R
from modules.sam2.build_sam import build_sam2_video_predictor
from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
from modules.mobilesamv2 import sam_model_registry
from sam2.sam2_video_predictor import SAM2VideoPredictor
from modules.mast3r.model import AsymmetricMASt3R
from torch.nn.functional import cosine_similarity
silent = False
# device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu' # #
# pe3r = Models('cpu') # 'cpu' #
# print(device)
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
outfile = os.path.join(outdir, 'scene.glb')
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = scene.ori_imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size)
def mask_nms(masks, threshold=0.8):
keep = []
mask_num = len(masks)
suppressed = np.zeros((mask_num), dtype=np.int64)
for i in range(mask_num):
if suppressed[i] == 1:
continue
keep.append(i)
for j in range(i + 1, mask_num):
if suppressed[j] == 1:
continue
intersection = (masks[i] & masks[j]).sum()
if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
suppressed[j] = 1
return keep
def filter(masks, keep):
ret = []
for i, m in enumerate(masks):
if i in keep: ret.append(m)
return ret
def mask_to_box(mask):
if mask.sum() == 0:
return np.array([0, 0, 0, 0])
# Get the rows and columns where the mask is 1
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
# Get top, bottom, left, right edges
top = np.argmax(rows)
bottom = len(rows) - 1 - np.argmax(np.flip(rows))
left = np.argmax(cols)
right = len(cols) - 1 - np.argmax(np.flip(cols))
return np.array([left, top, right, bottom])
def box_xyxy_to_xywh(box_xyxy):
box_xywh = deepcopy(box_xyxy)
box_xywh[2] = box_xywh[2] - box_xywh[0]
box_xywh[3] = box_xywh[3] - box_xywh[1]
return box_xywh
def get_seg_img(mask, box, image):
image = image.copy()
x, y, w, h = box
# image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
box_area = w * h
mask_area = mask.sum()
if 1 - (mask_area / box_area) < 0.2:
image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
else:
random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
image[mask == 0] = random_values[mask == 0]
seg_img = image[y:y+h, x:x+w, ...]
return seg_img
def pad_img(img):
h, w, _ = img.shape
l = max(w,h)
pad = np.zeros((l,l,3), dtype=np.uint8) #
if h > w:
pad[:,(h-w)//2:(h-w)//2 + w, :] = img
else:
pad[(w-h)//2:(w-h)//2 + h, :, :] = img
return pad
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
assert len(args) > 0 and all(
len(a) == len(args[0]) for a in args
), "Batched iteration must have inputs of all the same size."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
def slerp(u1, u2, t):
"""
Perform spherical linear interpolation (Slerp) between two unit vectors.
Args:
- u1 (torch.Tensor): First unit vector, shape (1024,)
- u2 (torch.Tensor): Second unit vector, shape (1024,)
- t (float): Interpolation parameter
Returns:
- torch.Tensor: Interpolated vector, shape (1024,)
"""
# Compute the dot product
dot_product = torch.sum(u1 * u2)
# Ensure the dot product is within the valid range [-1, 1]
dot_product = torch.clamp(dot_product, -1.0, 1.0)
# Compute the angle between the vectors
theta = torch.acos(dot_product)
# Compute the coefficients for the interpolation
sin_theta = torch.sin(theta)
if sin_theta == 0:
# Vectors are parallel, return a linear interpolation
return u1 + t * (u2 - u1)
s1 = torch.sin((1 - t) * theta) / sin_theta
s2 = torch.sin(t * theta) / sin_theta
# Perform the interpolation
return s1 * u1 + s2 * u2
def slerp_multiple(vectors, t_values):
"""
Perform spherical linear interpolation (Slerp) for multiple vectors.
Args:
- vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
- a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
Returns:
- torch.Tensor: Interpolated vector, shape (1024,)
"""
n = vectors.shape[0]
# Initialize the interpolated vector with the first vector
interpolated_vector = vectors[0]
# Perform Slerp iteratively
for i in range(1, n):
# Perform Slerp between the current interpolated vector and the next vector
t = t_values[i] / (t_values[i] + t_values[i-1])
interpolated_vector = slerp(interpolated_vector, vectors[i], t)
return interpolated_vector
@torch.no_grad
def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
sam_mask=[]
img_area = original_size[0] * original_size[1]
obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
input_boxes1 = obj_results[0].boxes.xyxy
input_boxes1 = input_boxes1.cpu().numpy()
input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
input_boxes = torch.from_numpy(input_boxes1).to(device)
# obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
# input_boxes2 = obj_results[0].boxes.xyxy
# input_boxes2 = input_boxes2.cpu().numpy()
# input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
# input_boxes2 = torch.from_numpy(input_boxes2).to(device)
# input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)
input_image = mobilesamv2.preprocess(sam1_image)
image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']
image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
for (boxes,) in batch_iterator(320, input_boxes):
with torch.no_grad():
image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
points=None,
boxes=boxes,
masks=None,)
low_res_masks, _ = mobilesamv2.mask_decoder(
image_embeddings=image_embedding,
image_pe=prompt_embedding,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
simple_type=True,
)
low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
for mask in sam_mask_pre:
if mask.sum() / img_area > 0.002:
sam_mask.append(mask.squeeze(1))
sam_mask=torch.cat(sam_mask)
sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
keep = mask_nms(sorted_sam_mask)
ret_mask = filter(sorted_sam_mask, keep)
return ret_mask
@torch.no_grad
def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cog_seg_maps = []
rev_cog_seg_maps = []
inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
mask_num = 0
sam1_images = images.sam1_images
sam1_images_size = images.sam1_images_size
np_images = images.np_images
np_images_size = images.np_images_size
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
for mask in sam1_masks:
_, _, _ = sam2.add_new_mask(
inference_state=inference_state,
frame_idx=0,
obj_id=mask_num,
mask=mask,
)
mask_num += 1
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state):
sam2_masks = (out_mask_logits > 0.0).squeeze(1)
video_segments[out_frame_idx] = {
out_obj_id: sam2_masks[i].cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
if out_frame_idx == 0:
continue
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
for sam1_mask in sam1_masks:
flg = 1
for sam2_mask in sam2_masks:
# print(sam1_mask.shape, sam2_mask.shape)
area1 = sam1_mask.sum()
area2 = sam2_mask.sum()
intersection = (sam1_mask & sam2_mask).sum()
if min(intersection / area1, intersection / area2) > 0.25:
flg = 0
break
if flg:
video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
mask_num += 1
multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
multi_view_clip_feats_map = {}
multi_view_clip_area_map = {}
for now_frame in range(0, len(video_segments), 1):
image = np_images[now_frame]
seg_img_list = []
out_obj_id_list = []
out_obj_mask_list = []
out_obj_area_list = []
# NOTE: background: -1
rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
for out_obj_id, mask in sorted_dict_items:
if mask.sum() == 0:
continue
rev_seg_map[mask] = out_obj_id
rev_cog_seg_maps.append(rev_seg_map)
seg_map = -np.ones(image.shape[:2], dtype=np.int64)
sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
for out_obj_id, mask in sorted_dict_items:
if mask.sum() == 0:
continue
box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
if box[2] == 0 and box[3] == 0:
continue
# print(box)
seg_img = get_seg_img(mask, box, image)
pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
seg_img_list.append(pad_seg_img)
seg_map[mask] = out_obj_id
out_obj_id_list.append(out_obj_id)
out_obj_area_list.append(np.count_nonzero(mask))
out_obj_mask_list.append(mask)
if len(seg_img_list) == 0:
cog_seg_maps.append(seg_map)
continue
seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
inputs = siglip_processor(images=seg_imgs, return_tensors="pt")
inputs = {key: value.to(device) for key, value in inputs.items()}
image_features = siglip.get_image_features(**inputs)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
image_features = image_features.detach().cpu()
for i in range(len(out_obj_mask_list)):
for j in range(i + 1, len(out_obj_mask_list)):
mask1 = out_obj_mask_list[i]
mask2 = out_obj_mask_list[j]
intersection = np.logical_and(mask1, mask2).sum()
area1 = out_obj_area_list[i]
area2 = out_obj_area_list[j]
if min(intersection / area1, intersection / area2) > 0.025:
conf1 = area1 / (area1 + area2)
# conf2 = area2 / (area1 + area2)
image_features[j] = slerp(image_features[j], image_features[i], conf1)
for i, clip_feat in enumerate(image_features):
id = out_obj_id_list[i]
if id in multi_view_clip_feats_map.keys():
multi_view_clip_feats_map[id].append(clip_feat)
multi_view_clip_area_map[id].append(out_obj_area_list[i])
else:
multi_view_clip_feats_map[id] = [clip_feat]
multi_view_clip_area_map[id] = [out_obj_area_list[i]]
cog_seg_maps.append(seg_map)
del image_features
for i in range(mask_num):
if i in multi_view_clip_feats_map.keys():
clip_feats = multi_view_clip_feats_map[i]
mask_area = multi_view_clip_area_map[i]
multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
else:
multi_view_clip_feats[i] = torch.zeros((1024))
multi_view_clip_feats[mask_num] = torch.zeros((1024))
return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats
class Scene_cpu:
def __init__(self, fix_imgs, cogs, focals, cams2world, pts3d, min_conf_thr, msk):
self.fix_imgs = fix_imgs
self.cogs = cogs
self.focals = focals
self.cams2world = cams2world
self.pts3d = pts3d
self.min_conf_thr = min_conf_thr
self.msk = msk
def render_image(self, text_feats, threshold=0.85):
self.rendered_imgs = []
# Collect all cosine similarities to compute min-max normalization
all_similarities = []
for each_cog in self.cogs:
similarity_map = cosine_similarity(each_cog, text_feats.unsqueeze(1), dim=-1)
all_similarities.append(similarity_map.squeeze().numpy())
# Flatten and normalize all similarities
total_similarities = np.concatenate(all_similarities)
min_sim, max_sim = total_similarities.min(), total_similarities.max()
normalized_similarities = [(sim - min_sim) / (max_sim - min_sim) for sim in all_similarities]
# Process each image with normalized similarities
for i, (each_cog, heatmap) in enumerate(zip(self.cogs, normalized_similarities)):
mask = heatmap > threshold
# Scale heatmap for visualization
heatmap = np.uint8(255 * heatmap)
heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
# Prepare image
image = self.fix_imgs[i]
image = image * 255.0
image = np.clip(image, 0, 255).astype(np.uint8)
# Apply mask and overlay heatmap with red RGB for masked areas
mask_indices = np.where(mask) # Get indices where mask is True
heatmap_color[mask_indices[0], mask_indices[1]] = [0, 0, 255] # Red color for masked regions
superimposed_img = np.where(np.expand_dims(mask, axis=-1), heatmap_color, image) / 255.0
self.rendered_imgs.append(superimposed_img)
@spaces.GPU(duration=180)
def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0,
as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05,
scenegraph_type='complete', winsize=1, refid=0):
"""
from a list of images, run dust3r inference, global aligner.
then run get_3D_model_from_scene
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval()
siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
image_encoder = sam1.vision_encoder
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
mobilesamv2.prompt_encoder = prompt_encoder
mobilesamv2.mask_decoder = mask_decoder
mobilesamv2.image_encoder=image_encoder
mobilesamv2.to(device=device)
mobilesamv2.eval()
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
yolov8 = ObjectAwareModel(YOLO8_CKP)
if len(filelist) < 2:
raise gradio.Error("Please input at least 2 images.")
images = Images(filelist=filelist, device=device)
# try:
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
# except Exception as e:
# rev_cog_seg_maps = []
# for tmp_img in images.np_images:
# rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
# rev_cog_seg_maps.append(rev_seg_map)
# cog_seg_maps = rev_cog_seg_maps
# cog_feats = torch.zeros((1, 1024))
# imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
lr = 0.01
# if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)
try:
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
for i in range(len(imgs)):
# print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
ori_imgs = scene.ori_imgs
lr = 0.01
# if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr)
except Exception as e:
scene = scene_1
scene.imgs = ori_imgs
scene.ori_imgs = ori_imgs
print(e)
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size)
torch.cuda.empty_cache()
fix_imgs = []
for img in scene.fix_imgs:
fix_imgs.append(img)
cogs = []
for cog in scene.cogs:
cog_cpu = cog.detach().cpu()
cogs.append(cog_cpu)
focals = scene.get_focals().detach().cpu()
cams2world = scene.get_im_poses().detach().cpu()
pts3d = to_numpy(scene.get_pts3d())
min_conf_thr = float(to_numpy(scene.conf_trf(torch.tensor(3.0))))
msk = to_numpy(scene.get_masks())
scene_cpu = Scene_cpu(fix_imgs, cogs, focals, cams2world, pts3d, min_conf_thr, msk)
del scene, scene_1
return scene_cpu, outfile
def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr=3.0, as_pointcloud=True,
mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05):
device = 'cpu'
siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256")
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval()
texts = [text]
inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
inputs = {key: value.to(device) for key, value in inputs.items()}
with torch.no_grad():
text_feats =siglip.get_text_features(**inputs)
text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
scene.render_image(text_feats, threshold)
scene.ori_imgs = scene.rendered_imgs
rgbimg = scene.ori_imgs
focals = scene.focals
cams2world = scene.cams2world
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = scene.pts3d
msk = scene.msk
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size)
tmpdirname = tempfile.mkdtemp(suffix='pe3r_gradio_demo')
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
scene = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
run_btn = gradio.Button("Reconstruct")
with gradio.Row():
text_input = gradio.Textbox(label="Query Text")
threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)
find_btn = gradio.Button("Find")
outmodel = gradio.Model3D()
# events
run_btn.click(fn=recon_fun,
inputs=[inputfiles],
outputs=[scene, outmodel]) # , outgallery, ,
find_btn.click(fn=get_3D_object_from_scene_fun,
inputs=[text_input, threshold, scene],
outputs=outmodel)
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
|