File size: 26,743 Bytes
1b65314
 
 
 
3d8bebe
4fea465
 
 
 
 
 
 
 
3d8bebe
4fea465
 
 
 
 
 
399850e
4fea465
 
 
3d8bebe
 
 
 
4fea465
3d8bebe
 
aca8922
 
3d8bebe
b00e12c
3d8bebe
 
b00e12c
3d8bebe
 
 
b00e12c
3d8bebe
02db263
b00e12c
5505892
9225e86
cb65982
ba148f1
 
3c68821
9225e86
83fd361
564a5c5
 
2a23e85
564a5c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fdf8bc
564a5c5
6cb20fb
2768473
2a23e85
564a5c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0887f00
564a5c5
3d8bebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fea465
3d8bebe
 
 
4fea465
3d8bebe
 
 
 
 
4fea465
3d8bebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fea465
3d8bebe
 
 
 
4fea465
3d8bebe
 
 
 
 
4fea465
3d8bebe
 
4fea465
3d8bebe
 
4fea465
3d8bebe
 
 
 
 
4fea465
3d8bebe
 
4fea465
3d8bebe
 
4fea465
3d8bebe
 
 
4fea465
3d8bebe
 
 
4fea465
3d8bebe
 
 
 
4fea465
3d8bebe
 
4fea465
3d8bebe
 
 
 
 
4fea465
3d8bebe
564a5c5
3d8bebe
 
e83787f
3d8bebe
b00e12c
ea05641
3d8bebe
 
564a5c5
3d8bebe
 
 
 
 
4fea465
3d8bebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba148f1
3d8bebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fea465
3d8bebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fea465
3d8bebe
 
1b65314
3d8bebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fea465
3d8bebe
 
 
 
 
 
 
 
4fea465
3d8bebe
4fea465
c0c5360
5505892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e886ce
ba148f1
 
 
43b0caa
 
 
 
ea05641
ba148f1
3c68821
b00e12c
 
ea05641
3d8bebe
bea11e6
6a67e40
 
bea11e6
3d8bebe
 
 
 
bea11e6
3d8bebe
 
 
 
 
 
bea11e6
3d8bebe
 
bea11e6
43b0caa
 
 
 
 
 
3d8bebe
ba148f1
3d8bebe
 
 
 
 
 
 
 
4fea465
564a5c5
 
 
 
 
 
 
 
 
 
b00e12c
564a5c5
 
 
 
 
 
 
 
 
 
 
 
b00e12c
564a5c5
 
 
 
 
 
 
 
 
 
 
 
bf287f9
 
e561533
5412668
3d8bebe
5505892
 
 
 
 
8a50897
5505892
8a50897
 
5505892
e22545f
5505892
 
3d8bebe
5808a3d
 
5505892
2768473
 
5505892
 
 
 
6a67e40
 
2768473
5505892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768473
 
 
4fea465
399850e
4fea465
399850e
 
5505892
399850e
 
 
5505892
8bcfdbb
399850e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5505892
399850e
5505892
 
 
399850e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import os
import sys
sys.path.append(os.path.abspath('./modules'))

import math
import tempfile
import gradio
import torch
import spaces
import numpy as np
import functools
import trimesh
import copy
from PIL import Image
from scipy.spatial.transform import Rotation

from modules.pe3r.images import Images

from modules.dust3r.inference import inference
from modules.dust3r.image_pairs import make_pairs
from modules.dust3r.utils.image import load_images #, rgb
from modules.dust3r.utils.device import to_numpy
from modules.dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from modules.dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from copy import deepcopy
import cv2
from typing import Any, Dict, Generator,List
import matplotlib.pyplot as pl

from modules.mobilesamv2.utils.transforms import ResizeLongestSide
from modules.pe3r.models import Models
import torchvision.transforms as tvf

sys.path.append(os.path.abspath('./modules/ultralytics'))

from transformers import AutoTokenizer, AutoModel, AutoProcessor, SamModel
from modules.mast3r.model import AsymmetricMASt3R

from modules.sam2.build_sam import build_sam2_video_predictor
from modules.mobilesamv2.promt_mobilesamv2 import ObjectAwareModel
from modules.mobilesamv2 import sam_model_registry

from sam2.sam2_video_predictor import SAM2VideoPredictor
from modules.mast3r.model import AsymmetricMASt3R

from torch.nn.functional import cosine_similarity

silent = False

# device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu' # #
# pe3r = Models('cpu') # 'cpu' #
# print(device)

def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
                                 cam_color=None, as_pointcloud=False,
                                 transparent_cams=False):
    assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
    pts3d = to_numpy(pts3d)
    imgs = to_numpy(imgs)
    focals = to_numpy(focals)
    cams2world = to_numpy(cams2world)

    scene = trimesh.Scene()

    # full pointcloud
    if as_pointcloud:
        pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
        col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
        pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
        scene.add_geometry(pct)
    else:
        meshes = []
        for i in range(len(imgs)):
            meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
        mesh = trimesh.Trimesh(**cat_meshes(meshes))
        scene.add_geometry(mesh)

    # add each camera
    for i, pose_c2w in enumerate(cams2world):
        if isinstance(cam_color, list):
            camera_edge_color = cam_color[i]
        else:
            camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
        add_scene_cam(scene, pose_c2w, camera_edge_color,
                      None if transparent_cams else imgs[i], focals[i],
                      imsize=imgs[i].shape[1::-1], screen_width=cam_size)

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
    outfile = os.path.join(outdir, 'scene.glb')
    if not silent:
        print('(exporting 3D scene to', outfile, ')')
    scene.export(file_obj=outfile)
    return outfile


def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
                            clean_depth=False, transparent_cams=False, cam_size=0.05):
    """
    extract 3D_model (glb file) from a reconstructed scene
    """
    if scene is None:
        return None
    # post processes
    if clean_depth:
        scene = scene.clean_pointcloud()
    if mask_sky:
        scene = scene.mask_sky()

    # get optimized values from scene
    rgbimg = scene.ori_imgs
    focals = scene.get_focals().cpu()
    cams2world = scene.get_im_poses().cpu()
    # 3D pointcloud from depthmap, poses and intrinsics
    pts3d = to_numpy(scene.get_pts3d())
    scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
    msk = to_numpy(scene.get_masks())
    return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
                                        transparent_cams=transparent_cams, cam_size=cam_size)

def mask_nms(masks, threshold=0.8):
    keep = []
    mask_num = len(masks)
    suppressed = np.zeros((mask_num), dtype=np.int64)
    for i in range(mask_num):
        if suppressed[i] == 1:
            continue
        keep.append(i)
        for j in range(i + 1, mask_num):
            if suppressed[j] == 1:
                continue
            intersection = (masks[i] & masks[j]).sum()
            if min(intersection / masks[i].sum(), intersection / masks[j].sum()) > threshold:
                suppressed[j] = 1
    return keep

def filter(masks, keep):
    ret = []
    for i, m in enumerate(masks):
        if i in keep: ret.append(m)
    return ret

def mask_to_box(mask):
    if mask.sum() == 0:
        return np.array([0, 0, 0, 0])
    
    # Get the rows and columns where the mask is 1
    rows = np.any(mask, axis=1)
    cols = np.any(mask, axis=0)
    
    # Get top, bottom, left, right edges
    top = np.argmax(rows)
    bottom = len(rows) - 1 - np.argmax(np.flip(rows))
    left = np.argmax(cols)
    right = len(cols) - 1 - np.argmax(np.flip(cols))
    
    return np.array([left, top, right, bottom])

def box_xyxy_to_xywh(box_xyxy):
    box_xywh = deepcopy(box_xyxy)
    box_xywh[2] = box_xywh[2] - box_xywh[0]
    box_xywh[3] = box_xywh[3] - box_xywh[1]
    return box_xywh

def get_seg_img(mask, box, image):
    image = image.copy()
    x, y, w, h = box
    # image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
    box_area = w * h
    mask_area = mask.sum()
    if 1 - (mask_area / box_area) < 0.2:
        image[mask == 0] = np.array([0, 0, 0], dtype=np.uint8)
    else:
        random_values = np.random.randint(0, 255, size=image.shape, dtype=np.uint8)
        image[mask == 0] = random_values[mask == 0]
    seg_img = image[y:y+h, x:x+w, ...]
    return seg_img

def pad_img(img):
    h, w, _ = img.shape
    l = max(w,h) 
    pad = np.zeros((l,l,3), dtype=np.uint8) # 
    if h > w:
        pad[:,(h-w)//2:(h-w)//2 + w, :] = img
    else:
        pad[(w-h)//2:(w-h)//2 + h, :, :] = img
    return pad

def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
    assert len(args) > 0 and all(
        len(a) == len(args[0]) for a in args
    ), "Batched iteration must have inputs of all the same size."
    n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
    for b in range(n_batches):
        yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]

def slerp(u1, u2, t):
    """
    Perform spherical linear interpolation (Slerp) between two unit vectors.
    
    Args:
    - u1 (torch.Tensor): First unit vector, shape (1024,)
    - u2 (torch.Tensor): Second unit vector, shape (1024,)
    - t (float): Interpolation parameter
    
    Returns:
    - torch.Tensor: Interpolated vector, shape (1024,)
    """
    # Compute the dot product
    dot_product = torch.sum(u1 * u2)
    
    # Ensure the dot product is within the valid range [-1, 1]
    dot_product = torch.clamp(dot_product, -1.0, 1.0)
    
    # Compute the angle between the vectors
    theta = torch.acos(dot_product)
    
    # Compute the coefficients for the interpolation
    sin_theta = torch.sin(theta)
    if sin_theta == 0:
        # Vectors are parallel, return a linear interpolation
        return u1 + t * (u2 - u1)
    
    s1 = torch.sin((1 - t) * theta) / sin_theta
    s2 = torch.sin(t * theta) / sin_theta
    
    # Perform the interpolation
    return s1 * u1 + s2 * u2

def slerp_multiple(vectors, t_values):
    """
    Perform spherical linear interpolation (Slerp) for multiple vectors.
    
    Args:
    - vectors (torch.Tensor): Tensor of vectors, shape (n, 1024)
    - a_values (torch.Tensor): Tensor of values corresponding to each vector, shape (n,)
    
    Returns:
    - torch.Tensor: Interpolated vector, shape (1024,)
    """
    n = vectors.shape[0]
    
    # Initialize the interpolated vector with the first vector
    interpolated_vector = vectors[0]
    
    # Perform Slerp iteratively
    for i in range(1, n):
        # Perform Slerp between the current interpolated vector and the next vector
        t = t_values[i] / (t_values[i] + t_values[i-1])
        interpolated_vector = slerp(interpolated_vector, vectors[i], t)
    
    return interpolated_vector

@torch.no_grad
def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    

    sam_mask=[]
    img_area = original_size[0] * original_size[1]

    obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=1024,conf=0.25,iou=0.95,verbose=False)
    input_boxes1 = obj_results[0].boxes.xyxy
    input_boxes1 = input_boxes1.cpu().numpy()
    input_boxes1 = transform.apply_boxes(input_boxes1, original_size)
    input_boxes = torch.from_numpy(input_boxes1).to(device)
    
    # obj_results = yolov8(yolov8_image,device=device,retina_masks=False,imgsz=512,conf=0.25,iou=0.9,verbose=False)
    # input_boxes2 = obj_results[0].boxes.xyxy
    # input_boxes2 = input_boxes2.cpu().numpy()
    # input_boxes2 = transform.apply_boxes(input_boxes2, original_size)
    # input_boxes2 = torch.from_numpy(input_boxes2).to(device)

    # input_boxes = torch.cat((input_boxes1, input_boxes2), dim=0)

    input_image = mobilesamv2.preprocess(sam1_image)
    image_embedding = mobilesamv2.image_encoder(input_image)['last_hidden_state']

    image_embedding=torch.repeat_interleave(image_embedding, 320, dim=0)
    prompt_embedding=mobilesamv2.prompt_encoder.get_dense_pe()
    prompt_embedding=torch.repeat_interleave(prompt_embedding, 320, dim=0)
    for (boxes,) in batch_iterator(320, input_boxes):
        with torch.no_grad():
            image_embedding=image_embedding[0:boxes.shape[0],:,:,:]
            prompt_embedding=prompt_embedding[0:boxes.shape[0],:,:,:]
            sparse_embeddings, dense_embeddings = mobilesamv2.prompt_encoder(
                points=None,
                boxes=boxes,
                masks=None,)
            low_res_masks, _ = mobilesamv2.mask_decoder(
                image_embeddings=image_embedding,
                image_pe=prompt_embedding,
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=False,
                simple_type=True,
            )
            low_res_masks=mobilesamv2.postprocess_masks(low_res_masks, input_size, original_size)
            sam_mask_pre = (low_res_masks > mobilesamv2.mask_threshold)
            for mask in sam_mask_pre:
                if mask.sum() / img_area > 0.002:
                    sam_mask.append(mask.squeeze(1))
    sam_mask=torch.cat(sam_mask)
    sorted_sam_mask = sorted(sam_mask, key=(lambda x: x.sum()), reverse=True)
    keep = mask_nms(sorted_sam_mask)
    ret_mask = filter(sorted_sam_mask, keep)

    return ret_mask

@torch.no_grad
def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    cog_seg_maps = []
    rev_cog_seg_maps = []
    inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
    mask_num = 0

    sam1_images = images.sam1_images
    sam1_images_size = images.sam1_images_size
    np_images = images.np_images
    np_images_size = images.np_images_size
    
    sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
    for mask in sam1_masks:
        _, _, _ = sam2.add_new_mask(
            inference_state=inference_state,
            frame_idx=0,
            obj_id=mask_num,
            mask=mask,
        )
        mask_num += 1

    video_segments = {}  # video_segments contains the per-frame segmentation results
    for out_frame_idx, out_obj_ids, out_mask_logits in sam2.propagate_in_video(inference_state):
        sam2_masks = (out_mask_logits > 0.0).squeeze(1)

        video_segments[out_frame_idx] = {
            out_obj_id: sam2_masks[i].cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }

        if out_frame_idx == 0:
            continue

        sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)

        for sam1_mask in sam1_masks:
            flg = 1
            for sam2_mask in sam2_masks:
                # print(sam1_mask.shape, sam2_mask.shape)
                area1 = sam1_mask.sum()
                area2 = sam2_mask.sum()
                intersection = (sam1_mask & sam2_mask).sum()
                if min(intersection / area1, intersection / area2) > 0.25:
                    flg = 0
                    break
            if flg:
                video_segments[out_frame_idx][mask_num] = sam1_mask.cpu().numpy()
                mask_num += 1

    multi_view_clip_feats = torch.zeros((mask_num+1, 1024))
    multi_view_clip_feats_map = {}
    multi_view_clip_area_map = {}
    for now_frame in range(0, len(video_segments), 1):
        image = np_images[now_frame]

        seg_img_list = []
        out_obj_id_list = []
        out_obj_mask_list = []
        out_obj_area_list = []
        # NOTE: background: -1
        rev_seg_map = -np.ones(image.shape[:2], dtype=np.int64)
        sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=False)
        for out_obj_id, mask in sorted_dict_items:
            if mask.sum() == 0:
                continue
            rev_seg_map[mask] = out_obj_id
        rev_cog_seg_maps.append(rev_seg_map)

        seg_map = -np.ones(image.shape[:2], dtype=np.int64)
        sorted_dict_items = sorted(video_segments[now_frame].items(), key=lambda x: np.count_nonzero(x[1]), reverse=True)
        for out_obj_id, mask in sorted_dict_items:
            if mask.sum() == 0:
                continue
            box = np.int32(box_xyxy_to_xywh(mask_to_box(mask)))
            
            if box[2] == 0 and box[3] == 0:
                continue
            # print(box)
            seg_img = get_seg_img(mask, box, image)
            pad_seg_img = cv2.resize(pad_img(seg_img), (256,256))
            seg_img_list.append(pad_seg_img)
            seg_map[mask] = out_obj_id
            out_obj_id_list.append(out_obj_id)
            out_obj_area_list.append(np.count_nonzero(mask))
            out_obj_mask_list.append(mask)

        if len(seg_img_list) == 0:
            cog_seg_maps.append(seg_map)
            continue

        seg_imgs = np.stack(seg_img_list, axis=0) # b,H,W,3
        seg_imgs = torch.from_numpy(seg_imgs).permute(0,3,1,2) # / 255.0
        
        inputs = siglip_processor(images=seg_imgs, return_tensors="pt")
        inputs = {key: value.to(device) for key, value in inputs.items()}
        
        image_features = siglip.get_image_features(**inputs)
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        image_features = image_features.detach().cpu()

        for i in range(len(out_obj_mask_list)):
            for j in range(i + 1, len(out_obj_mask_list)):
                mask1 = out_obj_mask_list[i]
                mask2 = out_obj_mask_list[j]
                intersection = np.logical_and(mask1, mask2).sum()
                area1 = out_obj_area_list[i]
                area2 = out_obj_area_list[j]
                if min(intersection / area1, intersection / area2) > 0.025:
                    conf1 = area1 / (area1 + area2)
                    # conf2 = area2 / (area1 + area2)
                    image_features[j] = slerp(image_features[j], image_features[i], conf1)

        for i, clip_feat in enumerate(image_features):
            id = out_obj_id_list[i]
            if id in multi_view_clip_feats_map.keys():
                multi_view_clip_feats_map[id].append(clip_feat)
                multi_view_clip_area_map[id].append(out_obj_area_list[i])
            else:
                multi_view_clip_feats_map[id] = [clip_feat]
                multi_view_clip_area_map[id] = [out_obj_area_list[i]]

        cog_seg_maps.append(seg_map)
        del image_features
        
    for i in range(mask_num):
        if i in multi_view_clip_feats_map.keys():
            clip_feats = multi_view_clip_feats_map[i]
            mask_area = multi_view_clip_area_map[i]
            multi_view_clip_feats[i] = slerp_multiple(torch.stack(clip_feats), np.stack(mask_area))
        else:
            multi_view_clip_feats[i] = torch.zeros((1024))
    multi_view_clip_feats[mask_num] = torch.zeros((1024))

    return cog_seg_maps, rev_cog_seg_maps, multi_view_clip_feats


class Scene_cpu:
    def __init__(self, fix_imgs, cogs, focals, cams2world, pts3d, min_conf_thr, msk):
        self.fix_imgs = fix_imgs
        self.cogs = cogs
        self.focals = focals
        self.cams2world = cams2world
        self.pts3d = pts3d
        self.min_conf_thr = min_conf_thr
        self.msk = msk

    def render_image(self, text_feats, threshold=0.85):
        self.rendered_imgs = []
        # Collect all cosine similarities to compute min-max normalization
        all_similarities = []
        for each_cog in self.cogs:
            similarity_map = cosine_similarity(each_cog, text_feats.unsqueeze(1), dim=-1)
            all_similarities.append(similarity_map.squeeze().numpy())
        # Flatten and normalize all similarities
        total_similarities = np.concatenate(all_similarities)
        min_sim, max_sim = total_similarities.min(), total_similarities.max()
        normalized_similarities = [(sim - min_sim) / (max_sim - min_sim) for sim in all_similarities]
        # Process each image with normalized similarities
        for i, (each_cog, heatmap) in enumerate(zip(self.cogs, normalized_similarities)):
            mask = heatmap > threshold
            # Scale heatmap for visualization
            heatmap = np.uint8(255 * heatmap)
            heatmap_color = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
            # Prepare image
            image = self.fix_imgs[i]
            image = image * 255.0
            image = np.clip(image, 0, 255).astype(np.uint8)
            # Apply mask and overlay heatmap with red RGB for masked areas
            mask_indices = np.where(mask)  # Get indices where mask is True
            heatmap_color[mask_indices[0], mask_indices[1]] = [0, 0, 255]  # Red color for masked regions
            superimposed_img = np.where(np.expand_dims(mask, axis=-1), heatmap_color, image) / 255.0
            self.rendered_imgs.append(superimposed_img)


@spaces.GPU(duration=180)
def get_reconstructed_scene(outdir, filelist, schedule='linear', niter=300, min_conf_thr=3.0,
                            as_pointcloud=True, mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05,
                            scenegraph_type='complete', winsize=1, refid=0):
    """
    from a list of images, run dust3r inference, global aligner.
    then run get_3D_model_from_scene
    """

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
    mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)

    sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)

    siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval()
    siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")

    SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
    mobilesamv2 = sam_model_registry['sam_vit_h'](None)
    sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
    image_encoder = sam1.vision_encoder

    prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
    mobilesamv2.prompt_encoder = prompt_encoder
    mobilesamv2.mask_decoder = mask_decoder
    mobilesamv2.image_encoder=image_encoder
    mobilesamv2.to(device=device)
    mobilesamv2.eval()
    
    YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
    yolov8 = ObjectAwareModel(YOLO8_CKP)

    if len(filelist) < 2:
        raise gradio.Error("Please input at least 2 images.")

    images = Images(filelist=filelist, device=device)
    
    # try:
    cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
    imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
    # except Exception as e:
    # rev_cog_seg_maps = []
    # for tmp_img in images.np_images:
    #     rev_seg_map = -np.ones(tmp_img.shape[:2], dtype=np.int64)
    #     rev_cog_seg_maps.append(rev_seg_map)
    # cog_seg_maps = rev_cog_seg_maps
    # cog_feats = torch.zeros((1, 1024))
    # imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)

    if len(imgs) == 1:
        imgs = [imgs[0], copy.deepcopy(imgs[0])]
        imgs[1]['idx'] = 1

    if scenegraph_type == "swin":
        scenegraph_type = scenegraph_type + "-" + str(winsize)
    elif scenegraph_type == "oneref":
        scenegraph_type = scenegraph_type + "-" + str(refid)

    pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
    output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
    mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
    scene_1 = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
    lr = 0.01
    # if mode == GlobalAlignerMode.PointCloudOptimizer:
    loss = scene_1.compute_global_alignment(tune_flg=True, init='mst', niter=niter, schedule=schedule, lr=lr)

    try:
        ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
        for i in range(len(imgs)):
            # print(imgs[i]['img'].shape, scene.imgs[i].shape, ImgNorm(scene.imgs[i])[None])
            imgs[i]['img'] = ImgNorm(scene_1.imgs[i])[None]
        pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
        output = inference(pairs, mast3r, device, batch_size=1, verbose=not silent)
        mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
        scene = global_aligner(output, cog_seg_maps, rev_cog_seg_maps, cog_feats, device=device, mode=mode, verbose=not silent)
        ori_imgs = scene.ori_imgs
        lr = 0.01
        # if mode == GlobalAlignerMode.PointCloudOptimizer:
        loss = scene.compute_global_alignment(tune_flg=False, init='mst', niter=niter, schedule=schedule, lr=lr)
    except Exception as e:
        scene = scene_1
        scene.imgs = ori_imgs
        scene.ori_imgs = ori_imgs
        print(e)

    outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
                                      clean_depth, transparent_cams, cam_size)
    
    torch.cuda.empty_cache()

    fix_imgs = []
    for img in scene.fix_imgs:
        fix_imgs.append(img)
    cogs = []
    for cog in scene.cogs:
        cog_cpu = cog.detach().cpu()
        cogs.append(cog_cpu)
    focals = scene.get_focals().detach().cpu()
    cams2world = scene.get_im_poses().detach().cpu()
    pts3d = to_numpy(scene.get_pts3d())
    min_conf_thr = float(to_numpy(scene.conf_trf(torch.tensor(3.0))))
    msk = to_numpy(scene.get_masks())
    scene_cpu = Scene_cpu(fix_imgs, cogs, focals, cams2world, pts3d, min_conf_thr, msk)

    del scene, scene_1

    return scene_cpu, outfile 


def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr=3.0, as_pointcloud=True, 
                 mask_sky=False, clean_depth=True, transparent_cams=True, cam_size=0.05):
    
    device = 'cpu'
    siglip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-large-patch16-256")
    siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device).eval()

    texts = [text]
    inputs = siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
    inputs = {key: value.to(device) for key, value in inputs.items()}
    with torch.no_grad():
        text_feats =siglip.get_text_features(**inputs)
        text_feats = text_feats / text_feats.norm(dim=-1, keepdim=True)
    scene.render_image(text_feats, threshold)
    scene.ori_imgs = scene.rendered_imgs
    rgbimg = scene.ori_imgs
    focals = scene.focals
    cams2world = scene.cams2world
    # 3D pointcloud from depthmap, poses and intrinsics
    pts3d = scene.pts3d
    msk = scene.msk
    return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
                                        transparent_cams=transparent_cams, cam_size=cam_size)




tmpdirname = tempfile.mkdtemp(suffix='pe3r_gradio_demo')

recon_fun = functools.partial(get_reconstructed_scene, tmpdirname)
# model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
get_3D_object_from_scene_fun = functools.partial(get_3D_object_from_scene, tmpdirname)

with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="PE3R Demo") as demo:
    # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
    scene = gradio.State(None)

    gradio.HTML('<h2 style="text-align: center;">PE3R Demo</h2>')
    with gradio.Column():
        inputfiles = gradio.File(file_count="multiple")

        run_btn = gradio.Button("Reconstruct")

        with gradio.Row():
            text_input = gradio.Textbox(label="Query Text")
            threshold = gradio.Slider(label="Threshold", value=0.85, minimum=0.0, maximum=1.0, step=0.01)

        find_btn = gradio.Button("Find")

        outmodel = gradio.Model3D()
        # events

        run_btn.click(fn=recon_fun,
                        inputs=[inputfiles],
                        outputs=[scene, outmodel]) # , outgallery, , 
        
        find_btn.click(fn=get_3D_object_from_scene_fun,
                            inputs=[text_input, threshold, scene],
                        outputs=outmodel)
demo.launch(show_error=True, share=None, server_name=None, server_port=None)