Spaces:
Runtime error
Runtime error
File size: 7,536 Bytes
fea4095 90055ac 1a1fb0e c88c76b fea4095 90055ac c88c76b 90055ac c88c76b 90055ac c88c76b 90055ac c88c76b 90055ac fea4095 25c11ba fea4095 25c11ba 7276d4c fea4095 25c11ba fea4095 bf2292c 90055ac 1a1fb0e 90055ac 1a1fb0e 25c11ba 1a1fb0e 25c11ba 1a1fb0e 25c11ba c88c76b 1a1fb0e c88c76b 25c11ba 1a1fb0e 25c11ba c88c76b 1a1fb0e 25c11ba 1a1fb0e 25c11ba fea4095 25c11ba fea4095 44302df fea4095 fee88b4 25c11ba 1a1fb0e 25c11ba fea4095 1a1fb0e 25c11ba 44302df 25c11ba fea4095 1a1fb0e 25c11ba fee88b4 44302df cddc4c2 25c11ba cddc4c2 25c11ba cddc4c2 25c11ba 44302df cddc4c2 25c11ba cddc4c2 44302df cddc4c2 25c11ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
from huggingface_hub import hf_hub_download
import json
import torch.nn as nn
import torch.nn.functional as F
import math
# Define the model architecture
class SmolLM2Config(PretrainedConfig):
model_type = "smollm2"
def __init__(
self,
vocab_size=49152,
hidden_size=576,
intermediate_size=1536,
num_hidden_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
# Register the model architecture
from transformers import AutoConfig
AutoConfig.register("smollm2", SmolLM2Config)
class SmolLM2ForCausalLM(PreTrainedModel):
config_class = SmolLM2Config
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if config.tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
hidden_states = self.embed_tokens(input_ids)
# Process through layers
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
return logits if loss is None else (loss, logits)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {
"input_ids": input_ids,
"attention_mask": kwargs.get("attention_mask", None)
}
# Register the model
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
# Cache for model and tokenizer
MODEL = None
TOKENIZER = None
def initialize():
global MODEL, TOKENIZER
if MODEL is None:
print("Loading model and tokenizer...")
model_id = "jatingocodeo/SmolLM2"
try:
# Download and load config
print("Loading config...")
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, 'r') as f:
config_dict = json.load(f)
config = SmolLM2Config(**config_dict)
# Load tokenizer
print("Loading tokenizer...")
TOKENIZER = AutoTokenizer.from_pretrained(model_id)
# Add special tokens if needed
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
TOKENIZER.add_special_tokens(special_tokens)
# Load model weights
print("Loading model...")
weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
# Initialize model
MODEL = SmolLM2ForCausalLM(config)
# Load state dict
state_dict = torch.load(weights_path, map_location="cpu")
MODEL.load_state_dict(state_dict)
# Move model to device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = MODEL.to(device)
print(f"Model loaded successfully on {device}")
except Exception as e:
print(f"Error initializing: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
# Initialize if not already done
if MODEL is None:
try:
initialize()
except Exception as e:
return f"Failed to initialize model: {str(e)}"
try:
# Process prompt
if not prompt.strip():
return "Please enter a prompt."
# Add BOS token if needed
if not prompt.startswith(TOKENIZER.bos_token):
prompt = TOKENIZER.bos_token + prompt
# Encode prompt
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
input_ids = input_ids.to(MODEL.device)
# Generate
with torch.no_grad():
outputs = MODEL.generate(
input_ids,
max_length=min(max_length + len(input_ids[0]), 2048),
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature
top_k=max(1, min(top_k, 100)), # Clamp top_k
do_sample=True if temperature > 0 else False,
num_return_sequences=1,
pad_token_id=TOKENIZER.pad_token_id,
eos_token_id=TOKENIZER.eos_token_id,
)
# Decode and return
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
import traceback
traceback.print_exc()
return f"Error during text generation: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="Generate text using the fine-tuned SmolLM2 model. Adjust parameters to control the generation.",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
],
allow_flagging="never"
)
# Initialize on startup
try:
initialize()
except Exception as e:
print(f"Warning: Model initialization failed: {str(e)}")
print("Model will be initialized on first request")
if __name__ == "__main__":
iface.launch() |