File size: 4,745 Bytes
3255105
 
 
0e007bb
6ae1346
 
b81df6e
3255105
0e007bb
 
6ae1346
0e007bb
d70db54
6ae1346
0e007bb
 
d70db54
cbb5f6b
3255105
0e007bb
cbb5f6b
 
 
 
3255105
 
cbb5f6b
b81df6e
 
 
cbb5f6b
b81df6e
 
d98b4df
3255105
6ae1346
 
 
 
 
 
0e007bb
6ae1346
 
 
 
3255105
 
0e007bb
3255105
0e007bb
3255105
d98b4df
0bdc84a
 
0e007bb
 
 
0bdc84a
 
 
 
 
 
 
3255105
 
0e007bb
0bdc84a
 
0e007bb
 
 
 
d98b4df
6ae1346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e007bb
6ae1346
 
0e007bb
 
 
 
 
 
 
6ae1346
d98b4df
0e007bb
 
6ae1346
0e007bb
6ae1346
0e007bb
 
6ae1346
 
0e007bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae1346
 
 
0e007bb
 
6ae1346
 
 
0e007bb
6ae1346
0e007bb
 
3255105
 
0e007bb
6ae1346
0e007bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from PIL import Image
import torchvision.datasets as datasets
import os

def load_model(model_id):
    # First load the base model
    base_model_id = "microsoft/Phi-3-mini-4k-instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
    
    # Ensure tokenizer has padding token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # Load base model for CPU
    base_model = AutoModelForCausalLM.from_pretrained(
        base_model_id,
        torch_dtype=torch.float32,  # Use float32 for CPU
        device_map="cpu",  # Force CPU
        trust_remote_code=True,
        low_cpu_mem_usage=True  # Enable memory optimization
    )
    
    # Load the LoRA adapter
    model = PeftModel.from_pretrained(
        base_model, 
        model_id,
        device_map="cpu"  # Force CPU
    )
    
    return model, tokenizer

def generate_description(image, model, tokenizer, max_length=100, temperature=0.7, top_p=0.9):
    # Convert and resize image
    if image.mode != "RGB":
        image = image.convert("RGB")
    image = image.resize((32, 32))
    
    # Format the input text
    input_text = """Below is an image. Please describe it in detail.

Image: [IMAGE]
Description: """
    
    # Tokenize input
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    
    # Generate response
    with torch.no_grad():
        outputs = model.generate(
            input_ids=inputs['input_ids'],  # Explicitly use input_ids
            attention_mask=inputs['attention_mask'],  # Add attention mask
            max_new_tokens=max_length,
            temperature=temperature,
            top_p=top_p,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            bos_token_id=tokenizer.bos_token_id,
            eos_token_id=tokenizer.eos_token_id,
            use_cache=True,  # Enable caching
            return_dict_in_generate=True,  # Return as dict
            output_scores=True  # Get scores
        )
    
    # Decode and return the response
    generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
    return generated_text.split("Description: ")[-1].strip()

def create_demo(model_id):
    # Load model and tokenizer
    model, tokenizer = load_model(model_id)
    
    # Get CIFAR10 examples
    cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True)
    examples = []
    used_classes = set()
    
    for idx in range(len(cifar10_test)):
        img, label = cifar10_test[idx]
        class_name = cifar10_test.classes[label]
        if class_name not in used_classes:
            examples.append(img)
            used_classes.add(class_name)
        if len(used_classes) == 10:
            break
    
    # Define the interface function
    def process_image(image, max_length, temperature, top_p):
        try:
            return generate_description(
                image,
                model,
                tokenizer,
                max_length=max_length,
                temperature=temperature,
                top_p=top_p
            )
        except Exception as e:
            return f"Error generating description: {str(e)}"
    
    # Create the interface
    demo = gr.Interface(
        fn=process_image,
        inputs=[
            gr.Image(type="pil", label="Input Image"),
            gr.Slider(
                minimum=50,
                maximum=200,
                value=100,
                step=10,
                label="Maximum Length"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.1,
                label="Top P"
            )
        ],
        outputs=gr.Textbox(label="Generated Description", lines=5),
        title="Image Description Generator",
        description="""This model generates detailed descriptions of images.
        
        You can adjust the generation parameters:
        - **Maximum Length**: Controls the length of the generated description
        - **Temperature**: Higher values make the description more creative
        - **Top P**: Controls the randomness in word selection
        """,
        examples=[[ex] for ex in examples]
    )
    return demo

if __name__ == "__main__":
    # Use your model ID
    model_id = "jatingocodeo/phi-vlm"
    demo = create_demo(model_id)
    demo.launch()