File size: 4,986 Bytes
3255105
 
 
0e007bb
6ae1346
 
b81df6e
3255105
0e007bb
 
6ae1346
0e007bb
d70db54
6ae1346
0e007bb
 
d70db54
cbb5f6b
3255105
0e007bb
cbb5f6b
 
 
 
3255105
 
cbb5f6b
b81df6e
 
 
cbb5f6b
b81df6e
 
d98b4df
3255105
6ae1346
9ebfecb
 
 
 
 
 
 
 
6ae1346
 
 
9ebfecb
 
 
 
 
cd3e480
9ebfecb
 
 
 
3255105
9ebfecb
cd3e480
9ebfecb
 
 
cd3e480
 
9ebfecb
 
cd3e480
9ebfecb
cd3e480
9ebfecb
 
 
 
 
3255105
9ebfecb
 
 
0e007bb
 
 
 
d98b4df
6ae1346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e007bb
6ae1346
 
0e007bb
 
 
 
 
 
 
6ae1346
d98b4df
0e007bb
 
6ae1346
0e007bb
6ae1346
0e007bb
 
6ae1346
 
0e007bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae1346
 
 
0e007bb
 
6ae1346
 
 
0e007bb
6ae1346
0e007bb
 
3255105
 
0e007bb
6ae1346
0e007bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from PIL import Image
import torchvision.datasets as datasets
import os

def load_model(model_id):
    # First load the base model
    base_model_id = "microsoft/Phi-3-mini-4k-instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
    
    # Ensure tokenizer has padding token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # Load base model for CPU
    base_model = AutoModelForCausalLM.from_pretrained(
        base_model_id,
        torch_dtype=torch.float32,  # Use float32 for CPU
        device_map="cpu",  # Force CPU
        trust_remote_code=True,
        low_cpu_mem_usage=True  # Enable memory optimization
    )
    
    # Load the LoRA adapter
    model = PeftModel.from_pretrained(
        base_model, 
        model_id,
        device_map="cpu"  # Force CPU
    )
    
    return model, tokenizer

def generate_description(image, model, tokenizer, max_length=100, temperature=0.7, top_p=0.9):
    try:
        # Convert and resize image
        if image.mode != "RGB":
            image = image.convert("RGB")
        image = image.resize((32, 32))
        
        # Format the input text
        input_text = """Below is an image. Please describe it in detail.

Image: [IMAGE]
Description: """
        
        # Ensure we have valid token IDs
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = tokenizer.eos_token_id
        
        # Tokenize input
        inputs = tokenizer(
            input_text,
            return_tensors="pt",
            add_special_tokens=True
        )
        
        # Generate response with simpler parameters
        with torch.no_grad():
            outputs = model.generate(
                input_ids=inputs['input_ids'],
                max_new_tokens=max_length,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                use_cache=False,  # Disable caching to avoid the error
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        
        # Decode and return the response
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return generated_text.split("Description: ")[-1].strip()
    
    except Exception as e:
        import traceback
        return f"Error generating description: {str(e)}\n{traceback.format_exc()}"

def create_demo(model_id):
    # Load model and tokenizer
    model, tokenizer = load_model(model_id)
    
    # Get CIFAR10 examples
    cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True)
    examples = []
    used_classes = set()
    
    for idx in range(len(cifar10_test)):
        img, label = cifar10_test[idx]
        class_name = cifar10_test.classes[label]
        if class_name not in used_classes:
            examples.append(img)
            used_classes.add(class_name)
        if len(used_classes) == 10:
            break
    
    # Define the interface function
    def process_image(image, max_length, temperature, top_p):
        try:
            return generate_description(
                image,
                model,
                tokenizer,
                max_length=max_length,
                temperature=temperature,
                top_p=top_p
            )
        except Exception as e:
            return f"Error generating description: {str(e)}"
    
    # Create the interface
    demo = gr.Interface(
        fn=process_image,
        inputs=[
            gr.Image(type="pil", label="Input Image"),
            gr.Slider(
                minimum=50,
                maximum=200,
                value=100,
                step=10,
                label="Maximum Length"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.1,
                label="Top P"
            )
        ],
        outputs=gr.Textbox(label="Generated Description", lines=5),
        title="Image Description Generator",
        description="""This model generates detailed descriptions of images.
        
        You can adjust the generation parameters:
        - **Maximum Length**: Controls the length of the generated description
        - **Temperature**: Higher values make the description more creative
        - **Top P**: Controls the randomness in word selection
        """,
        examples=[[ex] for ex in examples]
    )
    return demo

if __name__ == "__main__":
    # Use your model ID
    model_id = "jatingocodeo/phi-vlm"
    demo = create_demo(model_id)
    demo.launch()