File size: 12,574 Bytes
5092552 203942a 5092552 d4557ee ca98093 41f9740 1fa6961 203942a 41f9740 203942a 41f9740 203942a ca98093 41f9740 ca98093 203942a 1fa6961 58a708e 203942a cc467c2 203942a ca98093 41f9740 203942a 41f9740 203942a 4efaf9c 203942a 4efaf9c 203942a 4efaf9c 203942a 4efaf9c 203942a 58a708e 203942a 58a708e 203942a 0c69489 203942a 41f9740 203942a 41f9740 203942a 5092552 203942a 41f9740 203942a 58a708e 203942a 41f9740 203942a 58a708e 41f9740 203942a 41f9740 203942a 41f9740 203942a 41f9740 203942a 58a708e 203942a 58a708e 203942a 58a708e 203942a 58a708e 203942a 58a708e 203942a 58a708e 203942a 0c69489 41f9740 203942a 5092552 203942a 5092552 203942a 4efaf9c 41f9740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
"""
Final Working Multi-LLM Agent System
Robust fallback system that works even when Agno fails
"""
import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated, Optional
from dotenv import load_dotenv
# Core LangChain imports
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq
load_dotenv()
# System prompt for proper question answering
SYSTEM_PROMPT = """You are a helpful assistant tasked with answering questions using available tools.
Guidelines:
1. Use available tools to gather information when needed
2. Provide precise, factual answers
3. For numbers: don't use commas or units unless specified
4. For strings: don't use articles or abbreviations, write digits in plain text
5. Always end with 'FINAL ANSWER: [YOUR ANSWER]'
6. Be concise but thorough
7. If you cannot find the answer, state that clearly"""
# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the product."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the sum."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first and return the difference."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide the first integer by the second and return the quotient."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder when dividing the first integer by the second."""
return a % b
@tool
def web_search(query: str) -> str:
"""Search the web for information."""
try:
if os.getenv("TAVILY_API_KEY"):
time.sleep(random.uniform(0.5, 1.0))
search_tool = TavilySearchResults(max_results=3)
docs = search_tool.invoke({"query": query})
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:600]}</Doc>"
for d in docs
)
else:
return "Web search not available - no API key"
except Exception as e:
return f"Web search failed: {e}"
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for information."""
try:
time.sleep(random.uniform(0.3, 0.8))
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join(
f"<Doc src='Wikipedia'>{d.page_content[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# ---- Enhanced Agent State ----
class EnhancedAgentState(TypedDict):
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str, Any]
tools_used: List[str]
# ---- Working Multi-LLM System ----
class WorkingMultiLLMSystem:
"""Reliable multi-LLM system that actually works"""
def __init__(self):
self.tools = [multiply, add, subtract, divide, modulus, web_search, wiki_search]
self.graph = self._build_graph()
print("✅ Working Multi-LLM System initialized")
def _get_llm(self, model_name: str = "llama3-70b-8192"):
"""Get Groq LLM instance"""
return ChatGroq(
model=model_name,
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
def _build_graph(self) -> StateGraph:
"""Build the working LangGraph system"""
def router(st: EnhancedAgentState) -> EnhancedAgentState:
"""Route queries to appropriate processing"""
q = st["query"].lower()
if any(keyword in q for keyword in ["calculate", "multiply", "add", "subtract", "divide", "math"]):
agent_type = "math"
elif any(keyword in q for keyword in ["search", "find", "information", "about"]):
agent_type = "search"
elif any(keyword in q for keyword in ["wikipedia", "wiki"]):
agent_type = "wiki"
else:
agent_type = "general"
return {**st, "agent_type": agent_type, "tools_used": []}
def math_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Handle mathematical queries"""
t0 = time.time()
try:
llm = self._get_llm("llama3-70b-8192")
enhanced_query = f"""
Question: {st["query"]}
This is a mathematical question. Please solve it step by step and provide the exact numerical answer.
"""
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
response = llm.invoke([sys_msg, HumanMessage(content=enhanced_query)])
answer = response.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"perf": {"time": time.time() - t0, "provider": "Groq-Math"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def search_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Handle search queries"""
t0 = time.time()
try:
# Perform web search
search_results = web_search.invoke({"query": st["query"]})
llm = self._get_llm("llama3-70b-8192")
enhanced_query = f"""
Question: {st["query"]}
Search Results:
{search_results}
Based on the search results above, provide a direct answer to the question.
"""
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
response = llm.invoke([sys_msg, HumanMessage(content=enhanced_query)])
answer = response.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"tools_used": ["web_search"],
"perf": {"time": time.time() - t0, "provider": "Groq-Search"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def wiki_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Handle Wikipedia queries"""
t0 = time.time()
try:
# Perform Wikipedia search
wiki_results = wiki_search.invoke({"query": st["query"]})
llm = self._get_llm("llama3-70b-8192")
enhanced_query = f"""
Question: {st["query"]}
Wikipedia Results:
{wiki_results}
Based on the Wikipedia information above, provide a direct answer to the question.
"""
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
response = llm.invoke([sys_msg, HumanMessage(content=enhanced_query)])
answer = response.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"tools_used": ["wiki_search"],
"perf": {"time": time.time() - t0, "provider": "Groq-Wiki"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def general_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Handle general queries"""
t0 = time.time()
try:
llm = self._get_llm("llama3-70b-8192")
enhanced_query = f"""
Question: {st["query"]}
Please provide a direct, accurate answer to this question.
"""
sys_msg = SystemMessage(content=SYSTEM_PROMPT)
response = llm.invoke([sys_msg, HumanMessage(content=enhanced_query)])
answer = response.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"perf": {"time": time.time() - t0, "provider": "Groq-General"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
# Build graph
g = StateGraph(EnhancedAgentState)
g.add_node("router", router)
g.add_node("math", math_node)
g.add_node("search", search_node)
g.add_node("wiki", wiki_node)
g.add_node("general", general_node)
g.set_entry_point("router")
g.add_conditional_edges("router", lambda s: s["agent_type"], {
"math": "math",
"search": "search",
"wiki": "wiki",
"general": "general"
})
for node in ["math", "search", "wiki", "general"]:
g.add_edge(node, END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, query: str) -> str:
"""Process a query through the working system"""
state = {
"messages": [HumanMessage(content=query)],
"query": query,
"agent_type": "",
"final_answer": "",
"perf": {},
"tools_used": []
}
config = {"configurable": {"thread_id": f"working_{hash(query)}"}}
try:
result = self.graph.invoke(state, config)
answer = result.get("final_answer", "").strip()
# Validation
if not answer or answer == query or len(answer.strip()) == 0:
return "Information not available"
return answer
except Exception as e:
return f"Error processing query: {e}"
# ---- Compatibility Classes ----
class UnifiedAgnoEnhancedSystem:
"""Compatibility wrapper for the working system"""
def __init__(self):
print("Initializing working system...")
self.agno_system = None # Not using Agno
self.working_system = WorkingMultiLLMSystem()
self.graph = self.working_system.graph
def process_query(self, query: str) -> str:
return self.working_system.process_query(query)
def get_system_info(self) -> Dict[str, Any]:
return {
"system": "working_multi_llm",
"agno_available": False,
"total_models": 1,
"active_agents": ["math", "search", "wiki", "general"]
}
# For backward compatibility
AgnoEnhancedAgentSystem = WorkingMultiLLMSystem
AgnoEnhancedModelManager = WorkingMultiLLMSystem
def build_graph(provider: str = "working"):
"""Build working graph"""
system = WorkingMultiLLMSystem()
return system.graph
if __name__ == "__main__":
# Test the working system
system = WorkingMultiLLMSystem()
test_questions = [
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
"What is 25 multiplied by 17?",
"Who nominated the only Featured Article on English Wikipedia about a dinosaur?"
]
print("Testing Working Multi-LLM System:")
for i, question in enumerate(test_questions, 1):
print(f"\nQuestion {i}: {question}")
answer = system.process_query(question)
print(f"Answer: {answer}")
|