File size: 8,914 Bytes
4dcc8e2
10e9b7d
 
95555bb
 
87340ea
4dcc8e2
87340ea
38a1a77
95555bb
 
38a1a77
4dcc8e2
 
95555bb
4dcc8e2
38a1a77
4dcc8e2
 
 
 
 
 
 
 
 
 
38a1a77
 
 
4dcc8e2
cd32eb4
95555bb
4dcc8e2
38a1a77
4dcc8e2
38a1a77
 
 
4dcc8e2
 
2d9c7ce
4dcc8e2
 
15b6891
38a1a77
4dcc8e2
 
38a1a77
4dcc8e2
 
 
c3f6914
cd32eb4
4dcc8e2
80c837c
38a1a77
95555bb
80c837c
95555bb
7e4a06b
95555bb
 
e80aab9
95555bb
 
 
 
38a1a77
31243f4
4dcc8e2
38a1a77
 
31243f4
95555bb
 
38a1a77
 
4dcc8e2
95555bb
38a1a77
95555bb
 
 
 
 
 
4dcc8e2
80c837c
95555bb
80c837c
4dcc8e2
95555bb
 
4dcc8e2
95555bb
 
4dcc8e2
38a1a77
 
95555bb
 
38a1a77
95555bb
4dcc8e2
95555bb
38a1a77
 
 
95555bb
 
4dcc8e2
 
 
 
 
95555bb
38a1a77
 
 
 
 
95555bb
38a1a77
4dcc8e2
38a1a77
 
 
 
 
 
95555bb
 
4dcc8e2
95555bb
 
4dcc8e2
95555bb
4dcc8e2
 
 
 
 
95555bb
 
 
 
 
 
 
 
 
 
 
4dcc8e2
 
 
95555bb
4dcc8e2
 
 
 
3c4371f
4dcc8e2
e80aab9
4dcc8e2
95555bb
 
4dcc8e2
 
 
 
 
 
 
 
 
 
 
 
38a1a77
4dcc8e2
 
 
 
 
 
 
 
 
 
 
95555bb
e25ef11
95555bb
 
4dcc8e2
38a1a77
4dcc8e2
95555bb
 
 
 
 
 
e80aab9
 
 
4dcc8e2
cd32eb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
""" Enhanced Multi-LLM Agent Evaluation Runner with Vector Database Integration"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Enhanced Agent Definition ---
class EnhancedMultiLLMAgent:
    """A multi-provider LangGraph agent with vector database integration."""
    def __init__(self):
        print("Enhanced Multi-LLM Agent with Vector Database initialized.")
        try:
            self.system = HybridLangGraphMultiLLMSystem(provider="groq")
            self.graph = self.system.graph
            
            # Load metadata if available
            if os.path.exists("metadata.jsonl"):
                print("Loading question metadata...")
                count = self.system.load_metadata_from_jsonl("metadata.jsonl")
                print(f"Loaded {count} questions into vector database")
            
            print("Enhanced Multi-LLM Graph built successfully.")
        except Exception as e:
            print(f"Error building graph: {e}")
            self.graph = None
            self.system = None

    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question[:100]}...")
        
        if self.graph is None or self.system is None:
            return "Error: Agent not properly initialized"
        
        try:
            # Use the enhanced system's process_query method
            answer = self.system.process_query(question)
            
            # Additional validation
            if not answer or answer == question or len(answer.strip()) == 0:
                return "Information not available"
                
            return answer.strip()
                
        except Exception as e:
            error_msg = f"Error: {str(e)}"
            print(error_msg)
            return error_msg

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Fetch questions, run enhanced agent, and submit answers."""
    space_id = os.getenv("SPACE_ID")
    
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = EnhancedMultiLLMAgent()
        if agent.graph is None:
            return "Error: Failed to initialize agent properly", None
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
    print(f"Agent code URL: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # 3. Run Enhanced Agent
    results_log = []
    answers_payload = []
    print(f"Running Enhanced Multi-LLM agent with vector database on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
        
        try:
            submitted_answer = agent(question_text)
            
            # Additional validation to prevent question repetition
            if submitted_answer == question_text or submitted_answer.startswith(question_text):
                submitted_answer = "Information not available"
            
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, 
                "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
            })
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            print(f"Error running agent on task {task_id}: {e}")
            answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, 
                "Submitted Answer": error_msg
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Enhanced Multi-LLM Agent with Vector Database Integration")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        
        **Enhanced Agent Features:**
        - **Multi-LLM Support**: Groq (Llama-3 8B/70B, DeepSeek)
        - **Vector Database Integration**: FAISS + Supabase for similar question retrieval
        - **Intelligent Routing**: Automatically selects best provider based on query complexity
        - **Enhanced Tools**: Mathematical operations, web search, Wikipedia integration
        - **Question-Answering**: Optimized for evaluation tasks with proper formatting
        - **Similar Questions Context**: Uses vector similarity to provide relevant context
        - **Error Handling**: Robust fallback mechanisms and comprehensive logging
        
        **Routing Examples:**
        - Math: "What is 25 multiplied by 17?" → Llama-3 70B
        - Search: "Find information about Mercedes Sosa" → Search-Enhanced
        - Complex: "Analyze quantum computing principles" → DeepSeek
        - Simple: "What is the capital of France?" → Llama-3 8B
        
        **Vector Database Features:**
        - Automatic loading of metadata.jsonl if present
        - Similar question retrieval for enhanced context
        - Supabase integration for persistent storage
        - FAISS for fast vector similarity search
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " Enhanced Multi-LLM Agent with Vector DB Starting " + "-"*30)
    demo.launch(debug=True, share=False)