File size: 12,222 Bytes
d3bd386 d4557ee f4505e9 1fa6961 f4505e9 d4557ee f4505e9 1fa6961 f4505e9 d4557ee f4505e9 d4557ee f4505e9 0a2b69f a55679f f4505e9 a55679f d3bd386 0f81d99 f4505e9 d4557ee f4505e9 d4557ee a55679f d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee 1fa6961 a55679f d4557ee 1fa6961 d3bd386 f4505e9 d3bd386 c5a2611 f4505e9 d4557ee f4505e9 d3bd386 f4505e9 562685e d3bd386 f4505e9 d4557ee f4505e9 d4557ee f4505e9 d3bd386 f4505e9 562685e d3bd386 f4505e9 a55679f f4505e9 a55679f f4505e9 d3bd386 f4505e9 d4557ee f4505e9 a55679f f4505e9 676363b f4505e9 676363b f4505e9 1fa6961 f4505e9 676363b f4505e9 cc467c2 f4505e9 d3bd386 f4505e9 e750c5e f4505e9 a55679f f4505e9 72c7dbb 25c1140 d4557ee a55679f 25c1140 d4557ee 0f81d99 f4505e9 9a3d597 72c7dbb 25c1140 a55679f d4557ee a55679f 25c1140 d4557ee b1b6e20 d4557ee f4505e9 d4557ee e750c5e f4505e9 a55679f d4557ee a55679f d4557ee f4505e9 a55679f d4557ee f4505e9 d4557ee f4505e9 a55679f f4505e9 d4557ee a55679f d4557ee a55679f d4557ee a55679f d4557ee a55679f e750c5e a55679f f4505e9 e750c5e a55679f f4505e9 e750c5e a55679f f4505e9 e750c5e a55679f d4557ee e750c5e a55679f e750c5e d4557ee e750c5e a55679f e750c5e 0ab2059 72c7dbb 0ab2059 d4557ee 0ab2059 d4557ee 0f81d99 72c7dbb 22c4422 72c7dbb e750c5e 72c7dbb 6c0b312 cadb619 6c0b312 3be2c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
"""Enhanced LangGraph + Agno Hybrid Agent System"""
import os
import time
import random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langgraph.checkpoint.memory import MemorySaver
# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader, JSONLoader
from langchain_community.vectorstores import FAISS
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Agno imports
from agno.agent import Agent
from agno.models.groq import Groq
from agno.models.google import Gemini
from agno.tools.tavily import TavilyTools
from agno.memory.agent import AgentMemory
from agno.storage.sqlite import SqliteStorage
from agno.memory.v2.db.sqlite import SqliteMemoryDb # Correct import for memory DB
load_dotenv()
# Rate limiter with exponential backoff
class PerformanceRateLimiter:
def __init__(self, rpm: int, name: str):
self.rpm = rpm
self.name = name
self.times: List[float] = []
self.failures = 0
def wait_if_needed(self):
now = time.time()
self.times = [t for t in self.times if now - t < 60]
if len(self.times) >= self.rpm:
wait = 60 - (now - self.times[0]) + random.uniform(1, 3)
time.sleep(wait)
if self.failures:
backoff = min(2 ** self.failures, 30) + random.uniform(0.5, 1.5)
time.sleep(backoff)
self.times.append(now)
def record_success(self):
self.failures = 0
def record_failure(self):
self.failures += 1
# Initialize rate limiters
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
groq_limiter = PerformanceRateLimiter(28, "Groq")
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
# Create Agno agents with corrected SQLite storage and memory
def create_agno_agents():
# 1. Storage for the agent's overall state (conversations, etc.)
storage = SqliteStorage(
table_name="agent_sessions",
db_file="tmp/agent_sessions.db",
auto_upgrade_schema=True
)
# 2. A separate database for the agent's memory
memory_db = SqliteMemoryDb(db_file="tmp/agent_memory.db")
# 3. The AgentMemory object, which uses the memory_db
agent_memory = AgentMemory(
db=memory_db, # Pass the SqliteMemoryDb here
create_user_memories=True,
create_session_summary=True
)
math_agent = Agent(
name="MathSpecialist",
model=Groq(
model="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0
),
description="Expert mathematical problem solver",
instructions=[
"Solve math problems with precision",
"Show step-by-step calculations",
"Finish with: FINAL ANSWER: [result]"
],
storage=storage, # Use SqliteStorage for the agent's persistence
memory=agent_memory, # Use the configured AgentMemory
show_tool_calls=False,
markdown=False
)
research_agent = Agent(
name="ResearchSpecialist",
model=Gemini(
model="gemini-2.0-flash-lite",
api_key=os.getenv("GOOGLE_API_KEY"),
temperature=0
),
description="Expert research and information gathering specialist",
instructions=[
"Conduct thorough research using available tools",
"Synthesize information from multiple sources",
"Finish with: FINAL ANSWER: [answer]"
],
tools=[
TavilyTools(
api_key=os.getenv("TAVILY_API_KEY"),
search=True,
max_tokens=6000,
search_depth="advanced",
format="markdown"
)
],
storage=storage, # Use the same storage for persistence
memory=agent_memory, # Use the same memory configuration
show_tool_calls=False,
markdown=False
)
return {"math": math_agent, "research": research_agent}
# LangGraph tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of a divided by b."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Optimized Tavily web search."""
try:
time.sleep(random.uniform(1, 2))
docs = TavilySearchResults(max_results=2).invoke(query=query)
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Optimized Wikipedia search."""
try:
time.sleep(random.uniform(0.5, 1))
docs = WikipediaLoader(query=query, load_max_docs=1).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# FAISS setup
def setup_faiss():
try:
schema = """
{ page_content: .Question, metadata: { task_id: .task_id, Final_answer: ."Final answer" } }
"""
loader = JSONLoader(file_path="metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
chunks = splitter.split_documents(docs)
embeds = NVIDIAEmbeddings(
model="nvidia/nv-embedqa-e5-v5",
api_key=os.getenv("NVIDIA_API_KEY")
)
return FAISS.from_documents(chunks, embeds)
except Exception as e:
print(f"FAISS setup failed: {e}")
return None
class EnhancedAgentState(TypedDict):
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str,Any]
agno_resp: str
class HybridLangGraphAgnoSystem:
def __init__(self):
self.agno = create_agno_agents()
self.store = setup_faiss()
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
if self.store:
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
self.tools.append(create_retriever_tool(
retriever=retr,
name="Question_Search",
description="Retrieve similar questions"
))
self.graph = self._build_graph()
def _build_graph(self):
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
nvidia_llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
def router(st: EnhancedAgentState) -> EnhancedAgentState:
q = st["query"].lower()
if any(k in q for k in ["calculate","math"]): t="lg_math"
elif any(k in q for k in ["research","analyze"]): t="agno_research"
elif any(k in q for k in ["what is","who is"]): t="lg_retrieval"
else: t="agno_general"
return {**st, "agent_type": t}
def lg_math(st: EnhancedAgentState) -> EnhancedAgentState:
groq_limiter.wait_if_needed()
t0=time.time()
llm=groq_llm.bind_tools([multiply,add,subtract,divide,modulus])
sys=SystemMessage(content="Fast calculator. FINAL ANSWER: [result]")
res=llm.invoke([sys,HumanMessage(content=st["query"])])
return {**st, "final_answer":res.content, "perf":{"time":time.time()-t0,"prov":"LG-Groq"}}
def agno_research(st: EnhancedAgentState) -> EnhancedAgentState:
gemini_limiter.wait_if_needed()
t0=time.time()
resp=self.agno["research"].run(st["query"],stream=False)
return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-Gemini"}}
def lg_retrieval(st: EnhancedAgentState) -> EnhancedAgentState:
groq_limiter.wait_if_needed()
t0=time.time()
llm=groq_llm.bind_tools(self.tools)
sys=SystemMessage(content="Retrieve. FINAL ANSWER: [answer]")
res=llm.invoke([sys,HumanMessage(content=st["query"])])
return {**st, "final_answer":res.content, "perf":{"time":time.time()-t0,"prov":"LG-Retrieval"}}
def agno_general(st: EnhancedAgentState) -> EnhancedAgentState:
nvidia_limiter.wait_if_needed()
t0=time.time()
if any(k in st["query"].lower() for k in ["calculate","compute"]):
resp=self.agno["math"].run(st["query"],stream=False)
else:
resp=self.agno["research"].run(st["query"],stream=False)
return {**st, "final_answer":resp, "perf":{"time":time.time()-t0,"prov":"Agno-General"}}
def pick(st: EnhancedAgentState) -> str:
return st["agent_type"]
g=StateGraph(EnhancedAgentState)
g.add_node("router",router)
g.add_node("lg_math",lg_math)
g.add_node("agno_research",agno_research)
g.add_node("lg_retrieval",lg_retrieval)
g.add_node("agno_general",agno_general)
g.set_entry_point("router")
g.add_conditional_edges("router",pick,{
"lg_math":"lg_math","agno_research":"agno_research",
"lg_retrieval":"lg_retrieval","agno_general":"agno_general"
})
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
g.add_edge(n,"END")
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> Dict[str,Any]:
state={
"messages":[HumanMessage(content=q)],
"query":q,"agent_type":"","final_answer":"",
"perf":{},"agno_resp":""
}
cfg={"configurable":{"thread_id":f"hyb_{hash(q)}"}}
try:
out=self.graph.invoke(state,cfg)
return {
"answer":out["final_answer"],
"performance_metrics":out["perf"],
"provider_used":out["perf"].get("prov")
}
except Exception as e:
return {"answer":f"Error: {e}","performance_metrics":{},"provider_used":"Error"}
def build_graph(provider: str = "hybrid"):
"""
Build and return the StateGraph for the requested provider.
- "hybrid", "groq", "google", and "nvidia" are all valid and
will return the full HybridLangGraphAgnoSystem graph.
"""
if provider in ("hybrid", "groq", "google", "nvidia"):
return HybridLangGraphAgnoSystem().graph
else:
raise ValueError(f"Unsupported provider: '{provider}'. Please use 'hybrid', 'groq', 'google', or 'nvidia'.")
# Test
if __name__=="__main__":
graph=build_graph()
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
for m in res["messages"]:
m.pretty_print()
|