File size: 8,914 Bytes
4dcc8e2 10e9b7d 95555bb 87340ea 4dcc8e2 87340ea 38a1a77 95555bb 38a1a77 4dcc8e2 95555bb 4dcc8e2 38a1a77 4dcc8e2 38a1a77 4dcc8e2 cd32eb4 95555bb 4dcc8e2 38a1a77 4dcc8e2 38a1a77 4dcc8e2 2d9c7ce 4dcc8e2 15b6891 38a1a77 4dcc8e2 38a1a77 4dcc8e2 c3f6914 cd32eb4 4dcc8e2 80c837c 38a1a77 95555bb 80c837c 95555bb 7e4a06b 95555bb e80aab9 95555bb 38a1a77 31243f4 4dcc8e2 38a1a77 31243f4 95555bb 38a1a77 4dcc8e2 95555bb 38a1a77 95555bb 4dcc8e2 80c837c 95555bb 80c837c 4dcc8e2 95555bb 4dcc8e2 95555bb 4dcc8e2 38a1a77 95555bb 38a1a77 95555bb 4dcc8e2 95555bb 38a1a77 95555bb 4dcc8e2 95555bb 38a1a77 95555bb 38a1a77 4dcc8e2 38a1a77 95555bb 4dcc8e2 95555bb 4dcc8e2 95555bb 4dcc8e2 95555bb 4dcc8e2 95555bb 4dcc8e2 3c4371f 4dcc8e2 e80aab9 4dcc8e2 95555bb 4dcc8e2 38a1a77 4dcc8e2 95555bb e25ef11 95555bb 4dcc8e2 38a1a77 4dcc8e2 95555bb e80aab9 4dcc8e2 cd32eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
""" Enhanced Multi-LLM Agent Evaluation Runner with Vector Database Integration"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class EnhancedMultiLLMAgent:
"""A multi-provider LangGraph agent with vector database integration."""
def __init__(self):
print("Enhanced Multi-LLM Agent with Vector Database initialized.")
try:
self.system = HybridLangGraphMultiLLMSystem(provider="groq")
self.graph = self.system.graph
# Load metadata if available
if os.path.exists("metadata.jsonl"):
print("Loading question metadata...")
count = self.system.load_metadata_from_jsonl("metadata.jsonl")
print(f"Loaded {count} questions into vector database")
print("Enhanced Multi-LLM Graph built successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
self.system = None
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:100]}...")
if self.graph is None or self.system is None:
return "Error: Agent not properly initialized"
try:
# Use the enhanced system's process_query method
answer = self.system.process_query(question)
# Additional validation
if not answer or answer == question or len(answer.strip()) == 0:
return "Information not available"
return answer.strip()
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch questions, run enhanced agent, and submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = EnhancedMultiLLMAgent()
if agent.graph is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Enhanced Agent
results_log = []
answers_payload = []
print(f"Running Enhanced Multi-LLM agent with vector database on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
# Additional validation to prevent question repetition
if submitted_answer == question_text or submitted_answer.startswith(question_text):
submitted_answer = "Information not available"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Multi-LLM Agent with Vector Database Integration")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Enhanced Agent Features:**
- **Multi-LLM Support**: Groq (Llama-3 8B/70B, DeepSeek)
- **Vector Database Integration**: FAISS + Supabase for similar question retrieval
- **Intelligent Routing**: Automatically selects best provider based on query complexity
- **Enhanced Tools**: Mathematical operations, web search, Wikipedia integration
- **Question-Answering**: Optimized for evaluation tasks with proper formatting
- **Similar Questions Context**: Uses vector similarity to provide relevant context
- **Error Handling**: Robust fallback mechanisms and comprehensive logging
**Routing Examples:**
- Math: "What is 25 multiplied by 17?" → Llama-3 70B
- Search: "Find information about Mercedes Sosa" → Search-Enhanced
- Complex: "Analyze quantum computing principles" → DeepSeek
- Simple: "What is the capital of France?" → Llama-3 8B
**Vector Database Features:**
- Automatic loading of metadata.jsonl if present
- Similar question retrieval for enhanced context
- Supabase integration for persistent storage
- FAISS for fast vector similarity search
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent with Vector DB Starting " + "-"*30)
demo.launch(debug=True, share=False)
|