Spaces:
Runtime error
Runtime error
File size: 24,107 Bytes
4b4bf72 3f0f6de 58609ca 4b4bf72 b3d1640 6bd6b44 3f0f6de b2576ed 9402b4b 077e097 5835cbd 9303bcd 81e4873 5835cbd 81e4873 a165f87 de4e980 1e7baf3 ede97b6 b24f0de f3304e8 b24f0de c63ad9d b24f0de f3304e8 b24f0de 8585464 b24f0de 24d8365 e9be7bd b24f0de 5913d75 9f6b87d 3b05154 9f6b87d db1f2f7 b2576ed 6b0bce1 b88eade 6b0bce1 b88eade 4ec5d16 b88eade 79bbe0b b88eade 79bbe0b b88eade 7173364 b88eade 79bbe0b 7173364 b88eade 79bbe0b b88eade 5835cbd c63ad9d 5835cbd 03821a3 5835cbd 98d4e8c 03821a3 98d4e8c 5835cbd 98d4e8c b24f0de e8d0964 b24f0de e8d0964 b24f0de 5835cbd c63ad9d 5835cbd 98d4e8c 5835cbd 98d4e8c 5835cbd 98d4e8c 5835cbd c63ad9d 98d4e8c 5835cbd 79bbe0b c63ad9d 9402b4b de4e980 d27844e 643a16d 9402b4b 7173364 00bf9b7 b88eade 6b0bce1 7173364 c0f831c 6b0bce1 b88eade 5835cbd 6b0bce1 2198b18 0ba80af 6b0bce1 5835cbd 6b0bce1 5835cbd 6b0bce1 b88eade 5835cbd 4ec5d16 b2576ed 4ec5d16 6bd6b44 4ec5d16 7173364 4ec5d16 b2576ed b88eade 4ec5d16 64fef51 e8e9aaf 5835cbd b2576ed 4ec5d16 89e32b2 5835cbd 89e32b2 5835cbd 89e32b2 5835cbd 89e32b2 5835cbd 89e32b2 3f0f6de cebfb12 b2576ed 7173364 4ec5d16 6bd6b44 5835cbd 81e4873 b88eade 6b0bce1 cebfb12 5835cbd cebfb12 5835cbd 6b0bce1 5835cbd 6b0bce1 81e4873 5835cbd 0156b72 5835cbd 81e4873 5835cbd 81e4873 5835cbd 89e32b2 5835cbd 89e32b2 5835cbd 89e32b2 cebfb12 5835cbd cebfb12 89e32b2 cebfb12 3f0f6de cebfb12 db1f2f7 b2576ed db1f2f7 7204906 db1f2f7 b2576ed db1f2f7 81fb02f db1f2f7 afa7452 db1f2f7 113329a f496437 113329a 7173364 db1f2f7 f496437 db1f2f7 f496437 db1f2f7 afa7452 db1f2f7 f496437 db1f2f7 ec58410 db1f2f7 b9de9b2 9303bcd db1f2f7 84cf1b5 db1f2f7 e8e9aaf afa7452 b9de9b2 db1f2f7 5835cbd db1f2f7 9402b4b db1f2f7 5835cbd 98d4e8c 5835cbd 6b0bce1 db1f2f7 7173364 db1f2f7 b2576ed db1f2f7 6b0bce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
from sklearn.feature_extraction.text import CountVectorizer
from bertopic import BERTopic
import torch
import numpy as np
from collections import Counter
import os
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import pkg_resources
import folium
import country_converter as coco
import time
import gc
def clear_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
current_dir = os.path.dirname(os.path.abspath(__file__))
font_path = os.path.join(current_dir, "ArabicR2013-J25x.ttf")
ARABIC_STOP_WORDS = {
'ูู', 'ู
ู', 'ุฅูู', 'ุนูู', 'ุนูู', 'ุนู', 'ู
ุน', 'ุฎูุงู', 'ุญุชู', 'ุญุชู', 'ุฅุฐุง',
'ุซู
', 'ุฃู', 'ู', 'ู', 'ุจ', 'ู', 'ูู', 'ุงู', 'ูุฐุง',
'ูุฐู', 'ุฐูู', 'ุชูู', 'ูุคูุงุก', 'ูู
', 'ูู', 'ูู', 'ูู','ููุง', 'ูุญู',
'ุงูุช', 'ุงูุชู
', 'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ุงู', 'ูู',
'ุจุนุถ', 'ุบูุฑ', 'ุญูู', 'ุนูุฏ', 'ูุฏ', 'ููุฏ', 'ูู
', 'ูู', 'ูู',
'ู
ุง', 'ู
ุงุฐุง', 'ู
ุชู', 'ููู', 'ุงูู', 'ูู
ุงุฐุง', 'ุงูุฐู', 'ุงูุชู',
'ุงูุฐูู', 'ุงููุงุชู', 'ุงูููุงุชู', 'ุงูุงู', 'ุจูู', 'ููู', 'ุชุญุช',
'ุงู
ุงู
', 'ุฎูู', 'ุญูู', 'ูุจู', 'ุจุนุฏ', 'ุฃู', 'ูู', 'ูู
ุง', 'ููุง',
'ู
ูุฐ', 'ููุณ', 'ุญูุซ', 'ููุงู', 'ุฌุฏุง', 'ุฐุงุช', 'ุถู
ู', 'ุงูู', 'ูุฏู',
'ุนููู', 'ู
ุซู', 'ุฃู
ุง', 'ูุฏู', 'ููู', 'ููู
', 'ููู', 'ุงูุถุง', 'ูุงุฒู
',
'ูุฌุจ', 'ุตุงุฑ', 'ุตุงุฑุช', 'ุถุฏ', 'ูุง', 'ูุง', 'ุงู
ุง',
'ุจูุง', 'ุงู', 'ุจู', 'ุงูู', 'ูู
ุง', 'ุงูุง', 'ุงููู', 'ูู', 'ูู','ุงุฐุง','ุจูุง','ุงู','ูุฏูู','ูุฏูู','ุงูู','ููุช','ููุณ','ุงููุง', 'ููุช',
'ูุซู
', 'ูุฃู', 'ูู', 'ูุจ', 'ูู', 'ููู', 'ูุงู',
'ููุฐุง', 'ููุฐู', 'ูุฐูู', 'ูุชูู', 'ููุคูุงุก', 'ููู
', 'ููู', 'ููู', 'ููู', 'ููุญู',
'ูุงูุช', 'ูุงูุชู
', 'ููุงู', 'ููุงูุช', 'ููููู', 'ูุชููู', 'ูุงู', 'ููู',
'ูุจุนุถ', 'ูุบูุฑ', 'ูุญูู', 'ูุนูุฏ', 'ููุฏ', 'ูููุฏ', 'ููู
', 'ููู', 'ููู',
'ูู
ุง', 'ูู
ุงุฐุง', 'ูู
ุชู', 'ูููู', 'ูุงูู', 'ููู
ุงุฐุง', 'ูุงูุฐู', 'ูุงูุชู',
'ูุงูุฐูู', 'ูุงููุงุชู', 'ูุงูููุงุชู', 'ูุงูุงู', 'ูุจูู', 'ูููู','ูููุง', 'ูุชุญุช',
'ูุงู
ุงู
', 'ูุฎูู', 'ูุญูู', 'ููุจู', 'ูุจุนุฏ', 'ูุฃู', 'ููู', 'ููู
ุง', 'ูููุง',
'ูู
ูุฐ', 'ูููุณ', 'ูุญูุซ', 'ูููุงู', 'ูุฌุฏุง', 'ูุฐุงุช', 'ูุถู
ู', 'ูุงูู', 'ููุฏู',
'ูุนููู', 'ูู
ุซู', 'ูุฃู
ุง', 'ูููู', 'ูููู
', 'ูููู', 'ูุงูุถุง', 'ููุงุฒู
',
'ููุฌุจ', 'ูุตุงุฑ', 'ูุตุงุฑุช', 'ูุถุฏ', 'ููุง', 'ููุง', 'ูุงู
ุง',
'ูุจูุง', 'ูุงู', 'ูุจู', 'ูุงูู', 'ููู
ุง', 'ูุงูุง', 'ูุงููู', 'ููู', 'ููู', 'ูููุช',
'ููู', 'ูู
ู', 'ูุนูู', 'ูุนูู', 'ูุนู', 'ูู
ุน', 'ูุญุชู', 'ูุฅุฐุง',
'ููุฐุง', 'ููุฐู', 'ูุฐูู', 'ูุชูู', 'ููู', 'ููู', 'ููุญู',
'ููุงู', 'ููุงูุช', 'ููู', 'ูุจุนุถ', 'ูุญูู', 'ูุนูุฏ', 'ููุฏ',
'ูููุฏ', 'ููู
', 'ููู', 'ูู
ุง', 'ูููู', 'ูุงูู', 'ูุงูุฐู',
'ูุจูู', 'ููุจู', 'ูุจุนุฏ', 'ููู', 'ูููุง', 'ูููุงู', 'ูุงูู',
'ู
ูู','ุงูุง','ูููุง','ููุง','ููู
','ููู','ุนููู','ู
ููุง','ูู
ุง','ููู
','ููู','ูุงูู','ูู','ููู','ุจู','ูุญู','ูู','ุณูู','ููุง','ููุง','ู
ุนุง','ููู
ุง','ูุฅุฐุง','ู
ูู','ุนูู','ุฅุฐ','ูู
','ุจู','ูููุง','ููุฐุง','ููู
','ููุฏู', 'ูุนููู', 'ูู
ุซู',
'ูุงุญุฏ', 'ุงุซูุงู', 'ุซูุงุซุฉ', 'ุฃุฑุจุนุฉ', 'ุฎู
ุณุฉ', 'ุณุชุฉ', 'ุณุจุนุฉ',
'ุซู
ุงููุฉ', 'ุชุณุนุฉ', 'ุนุดุฑุฉ',
'ุงูุฃูู', 'ุงูุซุงูู', 'ุงูุซุงูุซ', 'ุงูุฑุงุจุน', 'ุงูุฎุงู
ุณ', 'ุงูุณุงุฏุณ',
'ุงูุณุงุจุน', 'ุงูุซุงู
ู', 'ุงูุชุงุณุน', 'ุงูุนุงุดุฑ'
}
COUNTRY_MAPPING = {
'ู
ุตุฑ': 'Egypt',
'ุงูุณุนูุฏูุฉ': 'Saudi Arabia',
'ุงูุฅู
ุงุฑุงุช': 'UAE',
'ุงููููุช': 'Kuwait',
'ุงูุนุฑุงู': 'Iraq',
'ุณูุฑูุง': 'Syria',
'ูุจูุงู': 'Lebanon',
'ุงูุฃุฑุฏู': 'Jordan',
'ููุณุทูู': 'Palestine',
'ุงููู
ู': 'Yemen',
'ุนู
ุงู': 'Oman',
'ูุทุฑ': 'Qatar',
'ุงูุจุญุฑูู': 'Bahrain',
'ุงูุณูุฏุงู': 'Sudan',
'ููุจูุง': 'Libya',
'ุชููุณ': 'Tunisia',
'ุงูุฌุฒุงุฆุฑ': 'Algeria',
'ุงูู
ุบุฑุจ': 'Morocco',
'ู
ูุฑูุชุงููุง': 'Mauritania'
}
st.set_page_config(
page_title="Contemporary Arabic Poetry Analysis",
page_icon="๐",
layout="wide"
)
@st.cache_resource
def load_models():
"""Load and cache the models to prevent reloading"""
tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_classifier = pipeline(
"sentiment-analysis",
model=emotion_model,
tokenizer=emotion_tokenizer,
return_all_scores=True
)
return tokenizer, bert_model, emotion_classifier
def split_text(text, max_length=512):
"""Split text into chunks of maximum token length while preserving word boundaries."""
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_length = len(word.split())
if current_length + word_length > max_length:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_length
else:
current_chunk.append(word)
current_length += word_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def get_country_coordinates():
"""Returns dictionary of Arab country coordinates"""
return {
'Egypt': [26.8206, 30.8025],
'Saudi Arabia': [23.8859, 45.0792],
'UAE': [23.4241, 53.8478],
'Kuwait': [29.3117, 47.4818],
'Iraq': [33.2232, 43.6793],
'Syria': [34.8021, 38.9968],
'Lebanon': [33.8547, 35.8623],
'Jordan': [30.5852, 36.2384],
'Palestine': [31.9522, 35.2332],
'Yemen': [15.5527, 48.5164],
'Oman': [21.4735, 55.9754],
'Qatar': [25.3548, 51.1839],
'Bahrain': [26.0667, 50.5577],
'Sudan': [12.8628, 30.2176],
'Libya': [26.3351, 17.2283],
'Tunisia': [33.8869, 9.5375],
'Algeria': [28.0339, 1.6596],
'Morocco': [31.7917, -7.0926],
'Mauritania': [21.0079, -10.9408]
}
def create_topic_map(summaries):
# Debug print to check incoming data
print("DEBUG - First summary emotions:", summaries[0]['top_emotions'])
coordinates = get_country_coordinates()
m = folium.Map(location=[27.0, 42.0], zoom_start=5)
sentiment_colors = {
'LABEL_1': 'green', # Positive
'LABEL_0': 'red', # Negative
'LABEL_2': 'blue' # Neutral
}
for summary in summaries:
country_en = COUNTRY_MAPPING.get(summary['country'])
if country_en and country_en in coordinates:
REVERSE_EMOTION_LABELS = {
'positive': 'LABEL_1',
'negative': 'LABEL_0',
'neutral': 'LABEL_2'
}
dominant_emotion = summary['top_emotions'][0]['emotion'] if summary['top_emotions'] else "neutral"
dominant_label = REVERSE_EMOTION_LABELS.get(dominant_emotion, 'LABEL_2')
circle_color = sentiment_colors.get(dominant_label, 'gray')
# Debug print
print(f"DEBUG - Country: {country_en}, Emotion: {dominant_emotion}, Label: {dominant_label}, Color: {circle_color}")
popup_content = f"""
<b>{country_en}</b><br>
<b>Sentiment Distribution:</b><br>
{'<br>'.join(f"โข {e['emotion']}: {e['count']}" for e in summary['top_emotions'][:3])}<br>
<b>Top Topic:</b><br>
{summary['top_topics'][0]['topic'] if summary['top_topics'] else 'No topics'}<br>
Total Poems: {summary['total_poems']}
"""
folium.CircleMarker(
location=coordinates[country_en],
radius=10,
popup=folium.Popup(popup_content, max_width=300),
color=circle_color,
fill=True
).add_to(m)
legend_html = """
<div style="position: fixed; bottom: 50px; left: 50px; z-index: 1000; background-color: white; padding: 10px; border: 2px solid grey; border-radius: 5px">
<p><b>Sentiment:</b></p>
<p><span style="color: green;">โ</span> Positive</p>
<p><span style="color: red;">โ</span> Negative</p>
<p><span style="color: blue;">โ</span> Neutral</p>
</div>
"""
m.get_root().html.add_child(folium.Element(legend_html))
return m
def create_arabic_wordcloud(text, title):
wordcloud = WordCloud(
width=1200,
height=600,
background_color='white',
font_path=font_path,
max_words=200,
stopwords=ARABIC_STOP_WORDS
).generate(text)
fig, ax = plt.subplots(figsize=(15, 8))
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
ax.set_title(title, fontsize=16, pad=20)
return fig
def clean_arabic_text(text):
"""Clean Arabic text by removing stop words and normalizing."""
words = text.split()
cleaned_words = [word for word in words if word not in ARABIC_STOP_WORDS and len(word) > 1]
return ' '.join(cleaned_words)
def classify_emotion(text, classifier):
"""Classify emotion for complete text with proper token handling."""
try:
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_tokens = len(classifier.tokenizer.encode(word))
if current_length + word_tokens > 512:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_tokens
else:
current_chunk.append(word)
current_length += word_tokens
if current_chunk:
chunks.append(' '.join(current_chunk))
if not chunks:
chunks = [text]
all_scores = []
for chunk in chunks:
try:
inputs = classifier.tokenizer(
chunk,
truncation=True,
max_length=512,
return_tensors="pt"
)
result = classifier(chunk, truncation=True, max_length=512)
scores = result[0]
all_scores.append(scores)
except Exception as chunk_error:
st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
continue
if all_scores:
label_scores = {}
count = len(all_scores)
for scores in all_scores:
for score in scores:
label = score['label']
if label not in label_scores:
label_scores[label] = 0
label_scores[label] += score['score']
avg_scores = {label: score/count for label, score in label_scores.items()}
final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
return final_emotion
return "LABEL_2"
except Exception as e:
st.warning(f"Error in emotion classification: {str(e)}")
return "LABEL_2"
def get_embedding_for_text(text, tokenizer, model):
"""Get embedding for complete text."""
chunks = split_text(text)
chunk_embeddings = []
for chunk in chunks:
try:
inputs = tokenizer(
chunk,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
chunk_embeddings.append(embedding[0])
except Exception as e:
st.warning(f"Error processing chunk: {str(e)}")
continue
if chunk_embeddings:
weights = np.array([len(chunk.split()) for chunk in chunks])
weights = weights / weights.sum()
weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
return weighted_embedding
return np.zeros(model.config.hidden_size)
def format_topics(topic_model, topic_counts):
"""Format topics for display."""
formatted_topics = []
for topic_num, count in topic_counts:
if topic_num == -1:
topic_label = "Miscellaneous"
else:
words = topic_model.get_topic(topic_num)
topic_label = " | ".join([word for word, _ in words[:5]])
formatted_topics.append({
'topic': topic_label,
'count': count
})
return formatted_topics
def format_emotions(emotion_counts):
"""Format emotions for display."""
EMOTION_LABELS = {
'LABEL_0': 'Negative',
'LABEL_1': 'Positive',
'LABEL_2': 'Neutral'
}
formatted_emotions = []
for label, count in emotion_counts:
emotion = EMOTION_LABELS.get(label, label)
formatted_emotions.append({
'emotion': emotion,
'count': count
})
return formatted_emotions
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
"""Process the data and generate summaries with flexible topic configuration."""
summaries = []
topic_model_params = {
"language": "arabic",
"calculate_probabilities": True,
"min_topic_size": 3,
"n_gram_range": (1, 1),
"top_n_words": 15,
"verbose": True,
}
st.write(f"Total documents: {len(df)}")
st.write(f"Topic strategy: {topic_strategy}")
st.write(f"Min topic size: {min_topic_size}")
if topic_strategy == "Manual":
topic_model_params["nr_topics"] = n_topics
else:
topic_model_params["nr_topics"] = "auto"
topic_model = BERTopic(
embedding_model=bert_model,
**topic_model_params)
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS),
min_df=1,
max_df=1.0)
topic_model.vectorizer_model = vectorizer
for country, group in df.groupby('country'):
progress_text = f"Processing poems for {country}..."
progress_bar = st.progress(0, text=progress_text)
texts = [clean_arabic_text(poem) for poem in group['poem'].dropna()]
all_emotions = []
embeddings = []
clear_memory()
for i, text in enumerate(texts):
try:
embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
if embedding is not None and not np.isnan(embedding).any():
embeddings.append(embedding)
else:
st.warning(f"Invalid embedding generated for text {i+1} in {country}")
continue
except Exception as e:
st.warning(f"Error generating embedding for text {i+1} in {country}: {str(e)}")
continue
if i % 10 == 0:
clear_memory()
progress = (i + 1) / len(texts) * 0.4
progress_bar.progress(progress, text=f"Generated embeddings for {i+1}/{len(texts)} poems...")
if len(embeddings) != len(texts):
texts = texts[:len(embeddings)]
embeddings = np.array(embeddings)
clear_memory()
for i, text in enumerate(texts):
emotion = classify_emotion(text, emotion_classifier)
all_emotions.append(emotion)
if i % 10 == 0:
clear_memory()
progress = 0.4 + ((i + 1) / len(texts) * 0.3)
progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")
try:
if len(texts) < min_topic_size:
st.warning(f"Not enough documents for {country} to generate meaningful topics (minimum {min_topic_size} required)")
continue
topics, probs = topic_model.fit_transform(texts, embeddings)
topic_counts = Counter(topics)
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
summaries.append({
'country': country,
'total_poems': len(texts),
'top_topics': top_topics,
'top_emotions': top_emotions
})
progress_bar.progress(1.0, text="Processing complete!")
except Exception as e:
st.warning(f"Could not generate topics for {country}: {str(e)}")
continue
return summaries, topic_model
try:
bert_tokenizer, bert_model, emotion_classifier = load_models()
st.success("Models loaded successfully!")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.stop()
# Main app interface
st.title("๐ Contemporary Arabic Poetry Analysis")
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
if uploaded_file is not None:
try:
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
required_columns = ['country', 'poem']
if not all(col in df.columns for col in required_columns):
st.error("File must contain 'country' and 'poem' columns.")
st.stop()
df['country'] = df['country'].str.strip()
df = df.dropna(subset=['country', 'poem'])
sampled_df = df.groupby('country').apply(lambda x: x.head(20)).reset_index(drop=True)
st.subheader("Topic Modeling Settings")
col1, col2 = st.columns(2)
with col1:
topic_strategy = st.radio(
"Topic Number Strategy",
["Auto", "Manual"],
help="Choose whether to let the model determine the optimal number of topics or set it manually"
)
if topic_strategy == "Manual":
n_documents = len(df)
max_topics = 500
min_topics = 5
default_topics = 20
n_topics = st.slider(
"Number of Topics",
min_value=min_topics,
max_value=max_topics,
value=default_topics,
help=f"Select the desired number of topics (max {max_topics} based on dataset size)"
)
st.info(f"""
๐ก For your dataset of {n_documents:,} documents:
- Available topic range: {min_topics}-{max_topics}
- Recommended range: {max_topics//10}-{max_topics//3} for optimal coherence
""")
with col2:
top_n = st.number_input(
"Number of top topics/emotions to display:",
min_value=1,
max_value=100,
value=10
)
if st.button("Process Data"):
with st.spinner("Processing your data..."):
summaries, topic_model = process_and_summarize(
sampled_df,
bert_tokenizer,
bert_model,
emotion_classifier,
top_n=top_n,
topic_strategy=topic_strategy,
n_topics=n_topics if topic_strategy == "Manual" else None,
min_topic_size=3
)
if summaries:
st.success("Analysis complete!")
tab1, tab2, tab3 = st.tabs(["Country Summaries", "Global Topics", "Topic Map"])
with tab1:
for summary in summaries:
with st.expander(f"๐ {summary['country']} ({summary['total_poems']} poems)"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Top Topics")
for topic in summary['top_topics']:
st.write(f"โข {topic['topic']}: {topic['count']} poems")
with col2:
st.subheader("Emotions")
for emotion in summary['top_emotions']:
st.write(f"โข {emotion['emotion']}: {emotion['count']} poems")
st.subheader("Word Cloud Visualization")
country_poems = df[df['country'] == summary['country']]['poem']
combined_text = ' '.join(country_poems)
wordcloud_fig = create_arabic_wordcloud(combined_text, f"Most Common Words in {summary['country']} Poems")
st.pyplot(wordcloud_fig)
with tab2:
st.subheader("Global Topic Distribution")
topic_info = topic_model.get_topic_info()
for _, row in topic_info.iterrows():
if row['Topic'] == -1:
topic_name = "Miscellaneous"
else:
words = topic_model.get_topic(row['Topic'])
topic_name = " | ".join([word for word, _ in words[:5]])
st.write(f"โข Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
with tab3:
st.subheader("Topic and Sentiment Distribution Map")
topic_map = create_topic_map(summaries)
st.components.v1.html(topic_map._repr_html_(), height=600)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else:
st.info("๐ Upload a file to get started!")
st.write("### Expected File Format:")
example_df = pd.DataFrame({
'country': ['Egypt', 'Palestine'],
'poem': ['ูุตูุฏุฉ ู
ุตุฑูุฉ', 'ูุตูุฏุฉ ููุณุทูููุฉ']
})
st.dataframe(example_df)
|