Spaces:
Sleeping
Sleeping
File size: 5,252 Bytes
2c20468 244a9ba d82bfa1 244a9ba d82bfa1 23cbcf8 d82bfa1 244a9ba 2c20468 0a1e2b9 244a9ba d82bfa1 2c20468 0a1e2b9 244a9ba d82bfa1 2c20468 244a9ba 2c20468 244a9ba 23cbcf8 d82bfa1 2c20468 0a1e2b9 244a9ba d82bfa1 2c20468 0a1e2b9 8ca77ad 0a1e2b9 244a9ba 0a1e2b9 244a9ba 812f60c 244a9ba d82bfa1 812f60c d82bfa1 2c20468 244a9ba 2c20468 0a1e2b9 8ca77ad a135ba9 8ca77ad a135ba9 8ca77ad 0a1e2b9 2c20468 812f60c a135ba9 244a9ba 2c20468 812f60c 244a9ba 812f60c 244a9ba 23cbcf8 244a9ba 812f60c a135ba9 812f60c a135ba9 244a9ba d82bfa1 2c20468 812f60c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
# Embeddings- und LLM-Modelle
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
LLM_MODEL_NAME = "google/flan-t5-small"
# **Dokumente laden und aufteilen**
def load_and_split_docs(list_file_path):
if not list_file_path:
return [], "Fehler: Keine Dokumente gefunden!"
loaders = [PyPDFLoader(x) for x in list_file_path]
documents = []
for loader in loaders:
documents.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
return text_splitter.split_documents(documents)
# **Vektor-Datenbank mit FAISS erstellen**
def create_db(docs):
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
return FAISS.from_documents(docs, embeddings)
# **Datenbank initialisieren**
def initialize_database(list_file_obj):
if not list_file_obj or all(x is None for x in list_file_obj):
return None, "Fehler: Keine Dateien hochgeladen!"
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_and_split_docs(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Datenbank erfolgreich erstellt!"
# **LLM-Kette initialisieren (Wrapper)**
def initialize_llm_chain_wrapper(temperature, max_tokens, vector_db):
if vector_db is None:
return None, "Fehler: Vektordatenbank nicht initialisiert!"
qa_chain = initialize_llm_chain(temperature, max_tokens, vector_db)
return qa_chain, "QA-Chatbot ist bereit!"
# **LLM-Kette erstellen**
def initialize_llm_chain(temperature, max_tokens, vector_db):
local_pipeline = pipeline(
"text2text-generation",
model=LLM_MODEL_NAME,
max_length=max_tokens,
temperature=temperature
)
llm = HuggingFacePipeline(pipeline=local_pipeline)
memory = ConversationBufferMemory(memory_key="chat_history")
retriever = vector_db.as_retriever()
return ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True
)
# **Konversation mit QA-Kette führen**
def conversation(qa_chain, message, history):
if qa_chain is None:
return None, "Der QA-Chain wurde nicht initialisiert!", history
if not message.strip():
return qa_chain, "Bitte eine Frage eingeben!", history
try:
response = qa_chain({"question": message, "chat_history": history})
response_text = response["answer"]
sources = [doc.metadata["source"] for doc in response["source_documents"]]
sources_text = "\n".join(sources) if sources else "Keine Quellen verfügbar"
return qa_chain, f"{response_text}\n\n**Quellen:**\n{sources_text}", history + [(message, response_text)]
except Exception as e:
return qa_chain, f"Fehler: {str(e)}", history
# **Gradio-Demo erstellen**
def demo():
with gr.Blocks() as demo:
vector_db = gr.State() # Zustand für die Vektordatenbank
qa_chain = gr.State() # Zustand für den QA-Chain
chat_history = gr.State([]) # Chatverlauf speichern
gr.HTML("<center><h1>RAG Chatbot mit FAISS und lokalen Modellen</h1></center>")
with gr.Row():
with gr.Column():
document = gr.Files(file_types=[".pdf"], label="PDF hochladen")
db_btn = gr.Button("Erstelle Vektordatenbank")
db_status = gr.Textbox(value="Status: Nicht initialisiert", show_label=False)
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, label="Temperature")
slider_max_tokens = gr.Slider(64, 512, value=256, label="Max Tokens")
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
with gr.Column():
chatbot = gr.Chatbot(label="Chatbot", type='messages', height=400)
msg = gr.Textbox(label="Deine Frage:", placeholder="Frage eingeben...")
submit_btn = gr.Button("Absenden")
# **Button-Events definieren**
db_btn.click(
initialize_database,
inputs=[document], # Eingabe der hochgeladenen Dokumente
outputs=[vector_db, db_status] # Ausgabe: Vektor-Datenbank und Status
)
qachain_btn.click(
initialize_llm_chain_wrapper,
inputs=[slider_temperature, slider_max_tokens, vector_db],
outputs=[qa_chain, db_status]
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chat_history], # Chatkette, Nutzerfrage, Chatverlauf
outputs=[qa_chain, chatbot, chat_history] # Antwort der Kette, Chatbot-Ausgabe, neuer Verlauf
)
demo.launch(debug=True, enable_queue=True)
if __name__ == "__main__":
demo()
|