Spaces:
Sleeping
Sleeping
File size: 10,510 Bytes
8876cd2 3c78fe7 8af6ce4 4727e02 ce3be16 445bf3a 258d659 8876cd2 b18aa7e 8876cd2 a506979 445bf3a 0c9d457 f9d5a22 a4c0920 0c9d457 00423c4 e725540 3d9a50d dc31fa3 ce3be16 7702d79 ce3be16 b18aa7e 1bb20ca b18aa7e 8876cd2 d58f189 445bf3a d58f189 258d659 d58f189 258d659 d58f189 3d9a50d 932646c 5cdc823 99bfd14 5cdc823 932646c 85775ba 4f71456 5cdc823 3c78fe7 b651e33 3c78fe7 99bfd14 85775ba 4f71456 85775ba 3c78fe7 d93a02f 4f71456 932646c c49dbd7 e0f2797 932646c e0f2797 932646c e0f2797 b651e33 b18aa7e 8af6ce4 3c78fe7 79b1800 8af6ce4 221bc87 c71a3a0 221bc87 c71a3a0 221bc87 79b1800 8af6ce4 79b1800 8af6ce4 79b1800 8af6ce4 3c78fe7 b832f73 445bf3a 8876cd2 445bf3a d58f189 32a9314 445bf3a 258d659 8876cd2 32a9314 8876cd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import joblib
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
from sklearn.impute import KNNImputer
from sklearn.decomposition import PCA
import pickle
from tensorflow.keras.models import load_model
import pickle
import hdbscan
# # Define the prediction function
def predict_ann(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
# columns = {
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
columns = { "0":[0],
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
"hours-per-week":[hours_per_week], "native-country":[native_country]}
df = pd.DataFrame(data=columns)
fixed_features = cleaning_features(df,race)
print(fixed_features)
# with open('ann_model.pkl', 'rb') as ann_model_file:
# ann_model = pickle.load(ann_model_file)
scaler = StandardScaler()
ann_model = load_model('ann_model.h5')
prediction = ann_model.predict(fixed_features)
# prediction = 1
return "Income >50K" if prediction == 1 else "Income <=50K"
def predict_rf(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
# columns = {
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
columns = { "0":[0],
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
"hours-per-week":[hours_per_week], "native-country":[native_country]}
df = pd.DataFrame(data=columns)
fixed_features = cleaning_features(df,race)
print(fixed_features)
# with open('ann_model.pkl', 'rb') as ann_model_file:
# ann_model = pickle.load(ann_model_file)
scaler = StandardScaler()
rf_model = pickle.load(open('rf_model.pkl', 'rb'))
prediction = rf_model.predict(fixed_features)
# prediction = 1
return "Income >50K" if prediction == 1 else "Income <=50K"
def predict_hb(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
# columns = {
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
columns = { "0":[0],
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
"hours-per-week":[hours_per_week], "native-country":[native_country]}
df = pd.DataFrame(data=columns)
fixed_features = cleaning_features(df,race)
print(fixed_features)
# with open('ann_model.pkl', 'rb') as ann_model_file:
# ann_model = pickle.load(ann_model_file)
scaler = StandardScaler()
X = scaler.fit_transform(fixed_features)
hb_model = pickle.load(open('hdbscan_model.pkl', 'rb'))
prediction = hdbscan.approximate_predict(hb_model,fixed_features)
# prediction = 1
return f"Predicted Cluster (HDBSCAN): {prediction}"
def cleaning_features(data,race):
# with open('race_onehot_encoder.pkl', 'rb') as enc_file:
# encoder = pickle.load(enc_file)
with open('label_encoder_work.pkl', 'rb') as le_file:
le_work = pickle.load(le_file)
with open('label_encoder_occ.pkl', 'rb') as le_file:
le_occ = pickle.load(le_file)
with open('scaler.pkl', 'rb') as scaler_file:
scaler = pickle.load(scaler_file)
education_num_mapping = {
"Preschool": 1,
"1st-4th": 2,
"5th-6th": 3,
"7th-8th": 4,
"9th": 5,
"10th": 6,
"11th": 7,
"12th": 8,
"HS-grad": 9,
"Some-college": 10,
"Assoc-voc": 11,
"Assoc-acdm": 12,
"Bachelors": 13,
"Masters": 14,
"Doctorate": 15,
"Prof-school": 16
}
race_categories = ["Amer-Indian-Eskimo", "Asian-Pac-Islander","Black", "Other","White"]
gender_mapping = {"Male":1,"Female":0}
country_mapping = {"United-States":1,"Other":0}
numeric_cols = ['age', 'educational-num', 'hours-per-week']
# columns_to_encode = ['race','marital-status','relationship']
columns_to_encode = ['race']
data['workclass'] = le_work.transform(data['workclass'])
data['occupation'] = le_occ.transform(data['occupation'])
data['gender'] = data['gender'].map(gender_mapping)
data['native-country'] = data['native-country'].map(country_mapping)
data['educational-num'] = data['educational-num'].map(education_num_mapping)
data[numeric_cols] = scaler.transform(data[numeric_cols])
for races in race_categories:
if race == races:
data[f'race_{races}'] = 1
else:
data[f'race_{races}'] = 0
# for N in columns_to_encode:
# race_encoded = encoder.transform(data[[N]])
# race_encoded_cols = encoder.get_feature_names_out([N])
# race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index)
# # Combine the encoded data with original dataframe
# data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1)
data = data.drop(columns=['race'])
data = pca(data)
return data
# def pca(data):
# encoder = OneHotEncoder(sparse_output=False)
# one_hot_encoded = encoder.fit_transform(data[['workclass', 'occupation']])
# encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
# pca_net = PCA(n_components=10)
# pca_result_net = pca_net.fit_transform(encoded_columns_df)
# pca_columns = [f'pca_component_{i+1}' for i in range(10)]
# pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
# data = data.drop(columns=['workclass', 'occupation'], axis=1) #remove the original columns
# data = pd.concat([data, pca_df], axis=1)
# return data
def pca(data):
encoder_pkl = 'onehot_encoder.pkl'
pca_model_pkl = 'pca.pkl'
with open(pca_model_pkl, 'rb') as file:
pca_model = pickle.load(file)
with open(encoder_pkl, 'rb') as file:
encoder = pickle.load(file)
one_hot_encoded = encoder.transform(data[['workclass', 'occupation']])
encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
pca_result_net = pca_model.transform(encoded_columns_df)
pca_columns = [f'pca_component_{i+1}' for i in range(pca_model.n_components_)]
pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
data = data.drop(columns=['workclass', 'occupation'], axis=1)
data = pd.concat([data, pca_df], axis=1)
return data
def hbdscan_tranform(df_transformed):
df_transformed['capital-gain'] = np.log1p(df_transformed['capital-gain'])
df_transformed['capital-loss'] = np.log1p(df_transformed['capital-loss'])
# Apply RobustScaler to all numerical features
numerical_features = ['age', 'capital-gain', 'capital-loss', 'hours-per-week']
scaler = RobustScaler()
df_transformed[numerical_features] = scaler.fit_transform(df_transformed[numerical_features])
return df_transformed
# Shared inputs
inputs = [
gr.Slider(18, 90, step=1, label="Age"),
gr.Dropdown(["Male", "Female"], label="Gender"),
gr.Dropdown(["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass"),
gr.Dropdown(["Preschool", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th", "12th", "HS-grad", "Some-college", "Assoc-voc", "Assoc-acdm", "Bachelors", "Masters", "Doctorate", "Prof-school"], label="Education"),
gr.Dropdown(["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], label="Marital Status"),
gr.Dropdown(["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], label="Occupation"),
gr.Dropdown(["Wife", "Husband", "Own-child", "Not-in-family", "Other-relative", "Unmarried"], label="Relationship"),
gr.Dropdown(["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], label="Race"),
gr.Slider(0, 100000, step=100, label="Capital Gain"),
gr.Slider(0, 5000, step=50, label="Capital Loss"),
gr.Slider(1, 60, step=1, label="Hours Per Week"),
gr.Dropdown(["United-States", "Canada", "Mexico", "Other"], label="Native Country")
]
# Interfaces for each model
ann_interface = gr.Interface(
fn=predict_ann,
inputs=inputs,
outputs="text",
title="Artificial Neural Network",
description="Predict income using an Artificial Neural Network."
)
rf_interface = gr.Interface(
fn=predict_rf,
inputs=inputs,
outputs="text",
title="Random Forest",
description="Predict income using a Random Forest model."
)
hb_interface = gr.Interface(
fn=predict_hb,
inputs=inputs,
outputs="text",
title="HDBScan Clustering",
description="Predict income using a HDBScan Clustering model."
)
interface = gr.TabbedInterface(
[ann_interface, rf_interface, hb_interface],
["ANN Model", "Random Forest Model", "HDBScan Model"]
)
interface.launch()
|