File size: 7,794 Bytes
4372b0a
 
 
 
 
 
 
 
 
 
 
b6ee928
517de74
5e95a20
 
 
 
d26962d
 
517de74
5e95a20
 
94febc8
0f74db4
 
978c4cf
4372b0a
 
a4f7e5c
4372b0a
a4f7e5c
5e95a20
 
 
4372b0a
 
5e95a20
 
a4f7e5c
94febc8
42d374e
4372b0a
b6ee928
 
4372b0a
 
 
 
 
b6ee928
a4f7e5c
b6ee928
4372b0a
3987ef0
a4f7e5c
4372b0a
978c4cf
4372b0a
 
 
5e95a20
 
4372b0a
0f74db4
5e95a20
42d374e
4372b0a
 
 
42d374e
4372b0a
a4f7e5c
 
5e95a20
a4f7e5c
4372b0a
 
 
5e95a20
 
 
a4f7e5c
4372b0a
5e95a20
4372b0a
5e95a20
4372b0a
 
c1cd51c
4372b0a
c1cd51c
5e95a20
 
4372b0a
5e95a20
4372b0a
 
 
5e95a20
 
4372b0a
 
5e95a20
 
4372b0a
5e95a20
4372b0a
5e95a20
4372b0a
5e95a20
 
 
 
4372b0a
5e95a20
 
 
4372b0a
0f74db4
94febc8
4372b0a
c1cd51c
4372b0a
5e95a20
4372b0a
5e95a20
 
4372b0a
5e95a20
 
4372b0a
5e95a20
 
 
 
4372b0a
d26962d
4372b0a
5e95a20
a4f7e5c
5e95a20
 
4372b0a
 
a4f7e5c
4372b0a
d26962d
5e95a20
4372b0a
 
 
 
 
5e95a20
 
4372b0a
5e95a20
4372b0a
d26962d
5e95a20
 
 
4372b0a
5e95a20
 
4372b0a
5e95a20
4372b0a
a4f7e5c
5e95a20
 
 
 
a4f7e5c
5e95a20
4372b0a
5e95a20
 
 
 
a4f7e5c
5e95a20
d26962d
 
978c4cf
4372b0a
5e95a20
40a1d7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
"""MedGenesis AI β€” CPU-only, dual-LLM (OpenAI / Gemini)"""

# ────────────── FIX: create a writable Streamlit data dir ──────────────
import os, pathlib
os.environ["STREAMLIT_DATA_DIR"]                = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"]                    = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
# ───────────────────────────────────────────────────────────────────────

import asyncio, re
from pathlib import Path

import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph

from mcp.orchestrator    import orchestrate_search, answer_ai_question
from mcp.workspace       import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics   import build_nx, get_top_hubs, get_density
from mcp.alerts          import check_alerts

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

# ──────────────── small helpers ─────────────────
def _pdf(papers):
    pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=11)
    pdf.cell(200, 8, "MedGenesis AI – Results", ln=True, align="C"); pdf.ln(3)
    for i, p in enumerate(papers, 1):
        pdf.set_font("Arial", "B", 11)
        pdf.multi_cell(0, 7, f"{i}. {p['title']}")
        pdf.set_font("Arial", "", 9)
        pdf.multi_cell(0, 6, f"{p['authors']}\n{p['summary']}\n{p['link']}\n")
        pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1")

def _sidebar_workspace():
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"]["ai_summary"])

# ──────────────── Streamlit UI ──────────────────
def render_ui():
    st.set_page_config("MedGenesis AI", layout="wide")
    _sidebar_workspace()

    # header
    c1, c2 = st.columns([0.15, 0.85])
    with c1:
        if LOGO.exists():
            st.image(str(LOGO), width=105)
    with c2:
        st.markdown("## 🧬 **MedGenesis AI**")
        st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")

    llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
    query = st.text_input("Enter biomedical question",
                          placeholder="e.g. CRISPR glioblastoma therapy")

    # alert check
    if get_workspace():
        try:
            news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
            if news:
                st.sidebar.subheader("πŸ”” New papers")
                for q, lst in news.items():
                    st.sidebar.write(f"**{q}** – {len(lst)} new")
        except Exception as e:
            st.sidebar.warning(f"Alert check failed: {e}")

    if st.button("Run Search πŸš€") and query:
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.success(f"Completed with **{res['llm_used'].title()}**")

        tabs = st.tabs(["Results", "Genes", "Trials", "Graph",
                        "Metrics", "Visuals"])

        # Results -----------------------------------------------------
        with tabs[0]:
            for i, p in enumerate(res["papers"], 1):
                st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
                st.write(p["summary"])

            col1, col2 = st.columns(2)
            with col1:
                st.download_button("CSV",
                                   pd.DataFrame(res["papers"]).to_csv(index=False),
                                   "papers.csv", "text/csv")
            with col2:
                st.download_button("PDF", _pdf(res["papers"]),
                                   "papers.pdf", "application/pdf")

            if st.button("πŸ’Ύ Save"):
                save_query(query, res)
                st.success("Saved to workspace")

            st.subheader("UMLS concepts")
            for c in res["umls"]:
                if c.get("cui"):
                    st.write(f"- **{c['name']}** ({c['cui']})")

            st.subheader("OpenFDA safety")
            for d in res["drug_safety"]:
                st.json(d)

            st.subheader("AI summary")
            st.info(res["ai_summary"])

        # Genes -------------------------------------------------------
        with tabs[1]:
            st.header("Gene / Variant signals")
            for g in res["genes"]:
                st.write(f"- **{g.get('name', g.get('geneid'))}** "
                         f"{g.get('description', '')}")
            if res["gene_disease"]:
                st.markdown("### DisGeNET links")
                st.json(res["gene_disease"][:15])
            if res["mesh_defs"]:
                st.markdown("### MeSH definitions")
                for d in res["mesh_defs"]:
                    if d:
                        st.write("-", d)

        # Trials ------------------------------------------------------
        with tabs[2]:
            st.header("Clinical trials")
            if not res["clinical_trials"]:
                st.info("No trials (rate-limited or none found).")
            for t in res["clinical_trials"]:
                st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
                st.write(f"Phase {t.get('Phase', [''])[0]} | "
                         f"Status {t['OverallStatus'][0]}")

        # Graph -------------------------------------------------------
        with tabs[3]:
            nodes, edges, cfg = build_agraph(res["papers"],
                                             res["umls"],
                                             res["drug_safety"])
            hl = st.text_input("Highlight node:", key="hl")
            if hl:
                pat = re.compile(re.escape(hl), re.I)
                for n in nodes:
                    n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
            agraph(nodes, edges, cfg)

        # Metrics -----------------------------------------------------
        with tabs[4]:
            G = build_nx([n.__dict__ for n in nodes],
                         [e.__dict__ for e in edges])
            st.metric("Density", f"{get_density(G):.3f}")
            st.markdown("**Top hubs**")
            for nid, sc in get_top_hubs(G):
                lab = next((n.label for n in nodes if n.id == nid), nid)
                st.write(f"- {lab}  {sc:.3f}")

        # Visuals -----------------------------------------------------
        with tabs[5]:
            years = [p["published"] for p in res["papers"] if p.get("published")]
            if years:
                st.plotly_chart(px.histogram(years, nbins=12,
                                             title="Publication Year"))

        st.markdown("---")
        follow = st.text_input("Ask follow-up:")
        if st.button("Ask AI"):
            ans = asyncio.run(answer_ai_question(follow,
                                                 context=query,
                                                 llm=llm))
            st.write(ans["answer"])

    else:
        st.info("Enter a question and press **Run Search πŸš€**")

# entry-point
if __name__ == "__main__":
    render_ui()