Spaces:
Sleeping
Sleeping
File size: 12,033 Bytes
06ee039 b97aaed 06ee039 dd92890 0f83924 dd92890 8588a31 b68b7bd bd23f77 dd92890 8f0f735 dd92890 8f0f735 dd92890 8f0f735 1e0350f b26cbe4 b97aaed d94f105 b97aaed b26cbe4 8f0f735 d94f105 b97aaed 8f0f735 b97aaed 8f0f735 3ae27aa 8f0f735 b97aaed 8f0f735 d94f105 8f0f735 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed 8f0f735 b97aaed 8f0f735 d94f105 8f0f735 dd92890 d94f105 dd92890 8f0f735 b97aaed 8f0f735 b97aaed 8f0f735 b97aaed 8f0f735 b97aaed 8f0f735 b97aaed dd92890 3ae27aa dd92890 b97aaed 8f0f735 b97aaed bd23f77 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed d94f105 b97aaed 9ba4314 3ae27aa b97aaed 2e9c284 8f0f735 b97aaed 8f0f735 b97aaed 8f0f735 b97aaed a2dbafb b97aaed 3ae27aa 8f0f735 3ae27aa dd92890 b97aaed dd92890 b97aaed 3ae27aa b97aaed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# ------------------------------
# Imports
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, List, Dict, Any
import chromadb
import re
import os
import streamlit as st
import requests
import time
import hashlib
from langchain.tools.retriever import create_retriever_tool
from datetime import datetime
# ------------------------------
# Data
# ------------------------------
research_texts = [
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing",
"Advancements in Neuromorphic Computing for Energy-Efficient AI Systems",
"Cross-Modal Learning: Integrating Visual and Textual Representations for Multimodal AI"
]
development_texts = [
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release",
"Framework Z: Version 3.2 Released with Enhanced Distributed Training Support",
"DevOps Pipeline: Automated CI/CD Implementation for ML Model Deployment"
]
# ------------------------------
# Configuration
# ------------------------------
class AppConfig:
def __init__(self):
self.DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
self.CHROMA_PATH = "chroma_db"
self.MAX_RETRIES = 3
self.RETRY_DELAY = 1.5
self.DOCUMENT_CHUNK_SIZE = 300
self.DOCUMENT_OVERLAP = 50
self.SEARCH_K = 5
self.SEARCH_TYPE = "mmr"
def validate(self):
if not self.DEEPSEEK_API_KEY:
st.error("""
**Configuration Error**
π Missing DeepSeek API key.
Configure through Hugging Face Space secrets:
1. Space Settings β Repository secrets
2. Add secret: DEEPSEEK_API_KEY=your_key
3. Rebuild Space
""")
st.stop()
# ------------------------------
# Chroma Setup
# ------------------------------
class ChromaManager:
def __init__(self, config: AppConfig):
os.makedirs(config.CHROMA_PATH, exist_ok=True)
self.client = chromadb.PersistentClient(path=config.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
self.research_collection = self._create_collection(
research_texts,
"research_collection",
{"category": "research"}
)
self.dev_collection = self._create_collection(
development_texts,
"development_collection",
{"category": "development"}
)
def _create_collection(self, documents: List[str], name: str, metadata: dict) -> Chroma:
splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=50,
separators=["\n\n", "\n", "γ"]
)
docs = splitter.create_documents(documents)
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=name,
collection_metadata=metadata
)
# ------------------------------
# Document Processing
# ------------------------------
class DocumentProcessor:
@staticmethod
def deduplicate(docs: List[Any]) -> List[Any]:
seen = set()
return [doc for doc in docs
if not (hashlib.md5(doc.page_content.encode()).hexdigest() in seen
or seen.add(hashlib.md5(doc.page_content.encode()).hexdigest()))]
@staticmethod
def extract_keypoints(docs: List[Any]) -> str:
categories = {
"quantum": ["quantum", "qubit"],
"vision": ["image", "recognition"],
"nlp": ["transformer", "language"]
}
return "\n".join(sorted({
"- " + {
"quantum": "Quantum computing breakthroughs",
"vision": "Computer vision advancements",
"nlp": "NLP architecture innovations"
}[cat]
for doc in docs
for cat, kw in categories.items()
if any(k in doc.page_content.lower() for k in kw)
}))
# ------------------------------
# Workflow State
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
# ------------------------------
# Workflow Setup
# ------------------------------
class AgentWorkflow:
def __init__(self, chroma: ChromaManager):
self.chroma = chroma
self.workflow = StateGraph(AgentState)
# Define nodes
self.workflow.add_node("agent", self.agent)
self.workflow.add_node("retrieve", ToolNode([
create_retriever_tool(
chroma.research_collection.as_retriever(),
"research_tool",
"Search research documents"
),
create_retriever_tool(
chroma.dev_collection.as_retriever(),
"dev_tool",
"Search development updates"
)
]))
self.workflow.add_node("generate", self.generate)
self.workflow.add_node("rewrite", self.rewrite)
# Define edges
self.workflow.set_entry_point("agent")
self.workflow.add_conditional_edges(
"agent",
self._tools_condition,
{"retrieve": "retrieve", "end": END}
)
self.workflow.add_conditional_edges(
"retrieve",
self._grade_documents,
{"generate": "generate", "rewrite": "rewrite"}
)
self.workflow.add_edge("generate", END)
self.workflow.add_edge("rewrite", "agent")
self.app = self.workflow.compile()
def agent(self, state: AgentState):
try:
messages = state["messages"]
query = messages[-1].content if isinstance(messages[-1], HumanMessage) else messages[-1]['content']
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"""Analyze this query: "{query}"
Respond EXACTLY as:
- SEARCH_RESEARCH: <terms> (for research topics)
- SEARCH_DEV: <terms> (for development updates)
- DIRECT: <answer> (otherwise)"""
}]
}
).json()
content = response['choices'][0]['message']['content']
if "SEARCH_RESEARCH:" in content:
terms = content.split("SEARCH_RESEARCH:")[1].strip()
results = self.chroma.research_collection.similarity_search(terms)
return {"messages": [AIMessage(content=f"Research Results: {str(results)}")]}
elif "SEARCH_DEV:" in content:
terms = content.split("SEARCH_DEV:")[1].strip()
results = self.chroma.dev_collection.similarity_search(terms)
return {"messages": [AIMessage(content=f"Development Results: {str(results)}")]}
return {"messages": [AIMessage(content=content)]}
except Exception as e:
return {"messages": [AIMessage(content=f"Error: {str(e)}")]}
def generate(self, state: AgentState):
docs = eval(state["messages"][-1].content.split("Results: ")[1])
processed = "\n".join([d.page_content[:200] for d in DocumentProcessor.deduplicate(docs)])
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Summarize these findings:\n{processed}"
}]
}
).json()
return {"messages": [AIMessage(content=response['choices'][0]['message']['content'])]}
def rewrite(self, state: AgentState):
original = state["messages"][0].content
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Rephrase this query: {original}"
}]
}
).json()
return {"messages": [AIMessage(content=response['choices'][0]['message']['content'])]}
def _tools_condition(self, state: AgentState):
return "retrieve" if "Results:" in state["messages"][-1].content else "end"
def _grade_documents(self, state: AgentState):
return "generate" if len(eval(state["messages"][-1].content.split("Results: ")[1])) > 0 else "rewrite"
# ------------------------------
# Streamlit App
# ------------------------------
def apply_theme():
st.markdown("""
<style>
.stApp { background: #1a1a1a; color: white; }
.stTextArea textarea { background: #2d2d2d !important; color: white !important; }
.stButton>button { background: #2E86C1; transition: 0.3s; }
.stButton>button:hover { background: #1B4F72; transform: scale(1.02); }
.data-box { background: #2d2d2d; border-left: 4px solid #2E86C1; padding: 15px; margin: 10px 0; }
</style>
""", unsafe_allow_html=True)
def main(config: AppConfig, chroma: ChromaManager):
apply_theme()
with st.sidebar:
st.header("π Databases")
with st.expander("Research", expanded=True):
for text in research_texts:
st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
with st.expander("Development"):
for text in development_texts:
st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
st.title("π AI Research Assistant")
query = st.text_area("Enter your query:", height=100)
if st.button("Analyze"):
with st.spinner("Processing..."):
try:
workflow = AgentWorkflow(chroma)
results = workflow.app.invoke({"messages": [HumanMessage(content=query)]})
with st.expander("Processing Details", expanded=True):
st.write("### Raw Results", results)
st.success("### Final Answer")
st.markdown(results['messages'][-1].content)
except Exception as e:
st.error(f"Processing failed: {str(e)}")
# ------------------------------
# Initialization
# ------------------------------
if __name__ == "__main__":
st.set_page_config(
page_title="AI Research Assistant",
layout="wide",
initial_sidebar_state="expanded"
)
try:
config = AppConfig()
config.validate()
chroma = ChromaManager(config)
main(config, chroma)
except Exception as e:
st.error(f"Initialization failed: {str(e)}") |