Spaces:
Running
Running
File size: 18,159 Bytes
06ee039 d94f105 06ee039 dd92890 0f83924 dd92890 8588a31 b68b7bd bd23f77 dd92890 8f0f735 dd92890 8f0f735 dd92890 8f0f735 1e0350f b26cbe4 d94f105 b26cbe4 8f0f735 d94f105 8f0f735 dd92890 d94f105 dd92890 8f0f735 d94f105 8f0f735 d94f105 8f0f735 d94f105 8f0f735 d94f105 8f0f735 dd92890 d94f105 dd92890 d94f105 dd92890 8f0f735 0f83924 8f0f735 9ba4314 d94f105 dd92890 d94f105 dd92890 8f0f735 bd23f77 d94f105 9742255 d94f105 9742255 d94f105 80d22c8 d94f105 9ba4314 8f0f735 d94f105 8f0f735 9ba4314 bd23f77 8f0f735 bd23f77 8f0f735 9ba4314 8f0f735 bd23f77 dd92890 8f0f735 d94f105 8f0f735 d94f105 dd92890 8f0f735 0f83924 8f0f735 d94f105 8f0f735 a2dbafb 9ba4314 8f0f735 9ba4314 8f0f735 d94f105 8f0f735 d94f105 bd23f77 8f0f735 d94f105 8f0f735 9ba4314 8f0f735 d94f105 8f0f735 d94f105 9ba4314 8f0f735 d94f105 8f0f735 d94f105 8f0f735 d94f105 8f0f735 d94f105 9ba4314 dd92890 d94f105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, List, Dict, Any
import chromadb
import re
import os
import streamlit as st
import requests
import time
import hashlib
from langchain.tools.retriever import create_retriever_tool
from datetime import datetime
# ------------------------------
# Data Definitions
# ------------------------------
research_texts = [
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing",
"Advancements in Neuromorphic Computing for Energy-Efficient AI Systems",
"Cross-Modal Learning: Integrating Visual and Textual Representations for Multimodal AI"
]
development_texts = [
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release",
"Framework Z: Version 3.2 Released with Enhanced Distributed Training Support",
"DevOps Pipeline: Automated CI/CD Implementation for ML Model Deployment"
]
# ------------------------------
# Configuration Class
# ------------------------------
class AppConfig:
def __init__(self):
self.DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
self.CHROMA_PATH = "chroma_db"
self.MAX_RETRIES = 3
self.RETRY_DELAY = 1.5
self.DOCUMENT_CHUNK_SIZE = 300
self.DOCUMENT_OVERLAP = 50
self.SEARCH_K = 5
self.SEARCH_TYPE = "mmr"
self.validate_config()
def validate_config(self):
if not self.DEEPSEEK_API_KEY:
st.error("""
**Critical Configuration Missing**
π DeepSeek API key not found in environment variables.
Please configure through Hugging Face Space secrets:
1. Go to Space Settings β Repository secrets
2. Add secret: Name=DEEPSEEK_API_KEY, Value=your_api_key
3. Rebuild Space
""")
st.stop()
config = AppConfig()
# ------------------------------
# ChromaDB Manager
# ------------------------------
class ChromaManager:
def __init__(self, research_data: List[str], development_data: List[str]):
os.makedirs(config.CHROMA_PATH, exist_ok=True)
self.client = chromadb.PersistentClient(path=config.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
self.research_collection = self.create_collection(
research_data,
"research_collection",
{"category": "research", "version": "1.2"}
)
self.dev_collection = self.create_collection(
development_data,
"development_collection",
{"category": "development", "version": "1.1"}
)
def create_collection(self, documents: List[str], name: str, metadata: dict) -> Chroma:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.DOCUMENT_CHUNK_SIZE,
chunk_overlap=config.DOCUMENT_OVERLAP,
separators=["\n\n", "\n", "γ", " "]
)
docs = text_splitter.create_documents(documents)
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=name,
collection_metadata=metadata
)
# Initialize Chroma with data
chroma_manager = ChromaManager(research_texts, development_texts)
# ------------------------------
# Document Processing
# ------------------------------
class DocumentProcessor:
@staticmethod
def deduplicate_documents(docs: List[Any]) -> List[Any]:
seen = set()
unique_docs = []
for doc in docs:
content_hash = hashlib.md5(doc.page_content.encode()).hexdigest()
if content_hash not in seen:
unique_docs.append(doc)
seen.add(content_hash)
return unique_docs
@staticmethod
def extract_key_points(docs: List[Any]) -> str:
key_points = []
categories = {
"quantum": ["quantum", "qpu", "qubit"],
"vision": ["image", "recognition", "vision"],
"nlp": ["transformer", "language", "llm"]
}
for doc in docs:
content = doc.page_content.lower()
if any(kw in content for kw in categories["quantum"]):
key_points.append("- Quantum computing integration showing promising results")
if any(kw in content for kw in categories["vision"]):
key_points.append("- Computer vision models achieving state-of-the-art accuracy")
if any(kw in content for kw in categories["nlp"]):
key_points.append("- NLP architectures evolving with memory-augmented transformers")
return "\n".join(list(set(key_points)))
# ------------------------------
# Enhanced Agent Components
# ------------------------------
class EnhancedAgent:
def __init__(self):
self.session_stats = {
"processing_times": [],
"doc_counts": [],
"error_count": 0
}
def api_request_with_retry(self, endpoint: str, payload: Dict) -> Dict:
headers = {
"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
for attempt in range(config.MAX_RETRIES):
try:
response = requests.post(
endpoint,
headers=headers,
json=payload,
timeout=30,
verify=False
)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
delay = config.RETRY_DELAY ** (attempt + 1)
time.sleep(delay)
continue
raise
raise Exception(f"API request failed after {config.MAX_RETRIES} attempts")
# ------------------------------
# Workflow Configuration
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
def agent(state: AgentState):
print("---CALL AGENT---")
messages = state["messages"]
user_message = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
prompt = f"""Given this user question: "{user_message}"
If about research/academic topics, respond EXACTLY:
SEARCH_RESEARCH: <search terms>
If about development status, respond EXACTLY:
SEARCH_DEV: <search terms>
Otherwise, answer directly."""
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False,
timeout=30
)
response.raise_for_status()
response_text = response.json()['choices'][0]['message']['content']
if "SEARCH_RESEARCH:" in response_text:
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
results = chroma_manager.research_collection.as_retriever().invoke(query)
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
elif "SEARCH_DEV:" in response_text:
query = response_text.split("SEARCH_DEV:")[1].strip()
results = chroma_manager.dev_collection.as_retriever().invoke(query)
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
return {"messages": [AIMessage(content=response_text)]}
except Exception as e:
error_msg = f"API Error: {str(e)}"
if "Insufficient Balance" in str(e):
error_msg += "\n\nPlease check your DeepSeek API account balance."
return {"messages": [AIMessage(content=error_msg)]}
def simple_grade_documents(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
return "generate" if "Results: [Document" in last_message.content else "rewrite"
def generate(state: AgentState):
messages = state["messages"]
question = messages[0].content
last_message = messages[-1]
docs_content = []
if "Results: [" in last_message.content:
docs_str = last_message.content.split("Results: ")[1]
docs_content = eval(docs_str)
processed_info = DocumentProcessor.extract_key_points(
DocumentProcessor.deduplicate_documents(docs_content)
)
prompt = f"""Generate structured research summary:
Key Information:
{processed_info}
Include:
1. Section headings
2. Bullet points
3. Significance
4. Applications"""
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers={
"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
},
json={
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
},
timeout=30
)
response.raise_for_status()
return {"messages": [AIMessage(content=response.json()['choices'][0]['message']['content'])]}
except Exception as e:
return {"messages": [AIMessage(content=f"Generation Error: {str(e)}")]}
def rewrite(state: AgentState):
messages = state["messages"]
original_question = messages[0].content
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers={
"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
},
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Rewrite for clarity: {original_question}"
}],
"temperature": 0.7,
"max_tokens": 1024
},
timeout=30
)
response.raise_for_status()
return {"messages": [AIMessage(content=response.json()['choices'][0]['message']['content'])}
except Exception as e:
return {"messages": [AIMessage(content=f"Rewrite Error: {str(e)}")]}
tools_pattern = re.compile(r"Action: .*")
def custom_tools_condition(state: AgentState):
content = state["messages"][-1].content
return "tools" if tools_pattern.match(content) else END
# ------------------------------
# Workflow Graph Setup
# ------------------------------
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent)
workflow.add_node("retrieve", ToolNode([
create_retriever_tool(
chroma_manager.research_collection.as_retriever(),
"research_db_tool",
"Search research database"
),
create_retriever_tool(
chroma_manager.dev_collection.as_retriever(),
"development_db_tool",
"Search development database"
)
]))
workflow.add_node("rewrite", rewrite)
workflow.add_node("generate", generate)
workflow.set_entry_point("agent")
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
workflow.add_conditional_edges("retrieve", simple_grade_documents, {"generate": "generate", "rewrite": "rewrite"})
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
app = workflow.compile()
# ------------------------------
# Streamlit UI
# ------------------------------
class UITheme:
primary_color = "#2E86C1"
secondary_color = "#28B463"
background_color = "#1A1A1A"
text_color = "#EAECEE"
@classmethod
def apply(cls):
st.markdown(f"""
<style>
.stApp {{ background-color: {cls.background_color}; color: {cls.text_color}; }}
.stTextArea textarea {{
background-color: #2D2D2D !important;
color: {cls.text_color} !important;
border: 1px solid {cls.primary_color};
}}
.stButton > button {{
background-color: {cls.primary_color};
color: white;
border: none;
padding: 12px 28px;
border-radius: 6px;
transition: all 0.3s ease;
font-weight: 500;
}}
.stButton > button:hover {{
background-color: {cls.secondary_color};
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}}
.data-box {{
background-color: #2D2D2D;
border-left: 4px solid {cls.primary_color};
padding: 18px;
margin: 14px 0;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
}}
</style>
""", unsafe_allow_html=True)
def main():
UITheme.apply()
st.set_page_config(
page_title="AI Research Assistant Pro",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://example.com/docs',
'Report a bug': 'https://example.com/issues',
'About': "v2.1 | Enhanced Research Assistant"
}
)
with st.sidebar:
st.header("π Knowledge Bases")
with st.expander("Research Database", expanded=True):
for text in research_texts:
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
with st.expander("Development Database"):
for text in development_texts:
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
st.title("π¬ AI Research Assistant Pro")
st.markdown("---")
query = st.text_area(
"Research Query Input",
height=120,
placeholder="Enter your research question...",
help="Be specific about domains for better results"
)
col1, col2 = st.columns([1, 2])
with col1:
if st.button("π Analyze Documents", use_container_width=True):
if not query:
st.warning("β οΈ Please enter a research question")
return
with st.status("Processing Workflow...", expanded=True) as status:
try:
start_time = time.time()
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
processed_data = []
for event in events:
if 'agent' in event:
content = event['agent']['messages'][0].content
if "Results:" in content:
docs = eval(content.split("Results: ")[1])
unique_docs = DocumentProcessor.deduplicate_documents(docs)
key_points = DocumentProcessor.extract_key_points(unique_docs)
processed_data.append(key_points)
with st.expander("π Retrieved Documents", expanded=False):
st.info(f"Found {len(unique_docs)} unique documents")
st.write(docs)
elif 'generate' in event:
final_answer = event['generate']['messages'][0].content
status.update(label="β
Analysis Complete", state="complete")
st.markdown("## π Research Summary")
st.markdown(final_answer)
st.caption(f"β±οΈ Processed in {time.time()-start_time:.2f}s | {len(processed_data)} clusters")
except Exception as e:
status.update(label="β Processing Failed", state="error")
st.error(f"**Error:** {str(e)}\n\nCheck API key and network connection")
with open("error_log.txt", "a") as f:
f.write(f"{datetime.now()} | {str(e)}\n")
with col2:
st.markdown("""
## π Usage Guide
**1. Query Formulation**
- Specify domains (e.g., "quantum NLP")
- Include timeframes for recent advances
**2. Results Interpretation**
- Expand sections for source documents
- Key points show technical breakthroughs
- Summary includes commercial implications
**3. Advanced Features**
- Use keyboard shortcuts for efficiency
- Click documents for raw context
- Export via screenshot/PDF
""")
if __name__ == "__main__":
main() |