Spaces:
Sleeping
Sleeping
File size: 17,265 Bytes
06ee039 dd92890 06ee039 dd92890 0f83924 dd92890 8588a31 b68b7bd bd23f77 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 1e0350f b26cbe4 dd92890 b26cbe4 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 b7719bf 06ee039 dd92890 06ee039 81de628 e021e49 81de628 e021e49 a1bb249 a2dbafb e021e49 a2dbafb dd92890 bd23f77 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 0f83924 dd92890 0f83924 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 bd23f77 dd92890 a2dbafb e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 a2dbafb e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 bd23f77 e021e49 bd23f77 e021e49 bd23f77 e021e49 bd23f77 dd92890 e021e49 bd23f77 e021e49 bd23f77 dd92890 e021e49 bd23f77 dd92890 e021e49 dd92890 e021e49 dd92890 bd23f77 dd92890 e021e49 bd23f77 dd92890 e021e49 bd23f77 0f83924 e021e49 dd92890 a2dbafb e021e49 dd92890 e021e49 dd92890 e021e49 dd92890 e021e49 bd23f77 e021e49 dd92890 bd23f77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, List, Dict
import chromadb
import re
import os
import streamlit as st
import requests
import hashlib
from langchain.tools.retriever import create_retriever_tool
from langchain.schema import Document
# ------------------------------
# Configuration
# ------------------------------
# Get DeepSeek API key from environment variables
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
# Validate API key configuration
if not DEEPSEEK_API_KEY:
st.error("""
**Critical Configuration Missing**
DeepSeek API key not found. Please ensure you have:
1. Created a Hugging Face Space secret named DEEPSEEK_API_KEY
2. Added your valid API key to the Space secrets
3. Restarted the Space after configuration
""")
st.stop()
# Create directory for Chroma persistence
os.makedirs("chroma_db", exist_ok=True)
# ------------------------------
# ChromaDB Client Configuration
# ------------------------------
# After (corrected)
chroma_client = chromadb.PersistentClient(
path="chroma_db",
settings=chromadb.config.Settings(anonymized_telemetry=False)
)
# ------------------------------
# Document Processing Utilities
# ------------------------------
def deduplicate_docs(docs: List[Document]) -> List[Document]:
"""Remove duplicate documents using content hashing"""
seen = set()
unique_docs = []
for doc in docs:
content_hash = hashlib.sha256(doc.page_content.encode()).hexdigest()
if content_hash not in seen:
seen.add(content_hash)
unique_docs.append(doc)
return unique_docs
# ------------------------------
# Data Preparation
# ------------------------------
research_texts = [
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
]
development_texts = [
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
]
# Create documents with metadata
splitter = RecursiveCharacterTextSplitter(
chunk_size=150,
chunk_overlap=20,
length_function=len,
add_start_index=True
)
research_docs = splitter.create_documents(
research_texts,
metadatas=[{"source": "research", "doc_id": f"res_{i}"} for i in range(len(research_texts))]
)
development_docs = splitter.create_documents(
development_texts,
metadatas=[{"source": "development", "doc_id": f"dev_{i}"} for i in range(len(development_texts))]
)
# ------------------------------
# Vector Store Initialization
# ------------------------------
embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
model_kwargs={"dimensions": 1024}
)
research_vectorstore = Chroma.from_documents(
documents=research_docs,
embedding=embeddings,
client=chroma_client,
collection_name="research_collection",
collection_metadata={"hnsw:space": "cosine"}
)
development_vectorstore = Chroma.from_documents(
documents=development_docs,
embedding=embeddings,
client=chroma_client,
collection_name="development_collection",
collection_metadata={"hnsw:space": "cosine"}
)
# ------------------------------
# Retriever Tools Configuration
# ------------------------------
research_retriever = research_vectorstore.as_retriever(
search_type="mmr",
search_kwargs={"k": 5, "fetch_k": 10}
)
development_retriever = development_vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
tools = [
create_retriever_tool(
research_retriever,
"research_database",
"Searches through academic papers and research reports for technical AI advancements"
),
create_retriever_tool(
development_retriever,
"development_database",
"Accesses current project statuses and development timelines"
)
]
# ------------------------------
# Agent State Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
# ------------------------------
# Core Agent Function
# ------------------------------
def agent(state: AgentState):
"""Main decision-making agent handling user queries"""
print("\n--- AGENT EXECUTION START ---")
messages = state["messages"]
try:
# Extract user message content
user_message = messages[-1].content if isinstance(messages[-1], HumanMessage) else ""
# Construct analysis prompt
prompt = f"""Analyze this user query and determine the appropriate action:
Query: {user_message}
Response Format:
- If research-related (technical details, academic concepts), respond:
SEARCH_RESEARCH: [keywords]
- If development-related (project status, timelines), respond:
SEARCH_DEV: [keywords]
- If general question, answer directly
- If unclear, request clarification
"""
# API request configuration
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
"max_tokens": 256
}
# Execute API call
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
# Process response
response_text = response.json()['choices'][0]['message']['content']
print(f"Agent Decision: {response_text}")
# Handle different response types
if "SEARCH_RESEARCH:" in response_text:
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
results = research_retriever.invoke(query)
unique_results = deduplicate_docs(results)
return {
"messages": [
AIMessage(
content=f'Action: research_database\nQuery: "{query}"\nResults: {len(unique_results)} relevant documents',
additional_kwargs={"documents": unique_results}
)
]
}
elif "SEARCH_DEV:" in response_text:
query = response_text.split("SEARCH_DEV:")[1].strip()
results = development_retriever.invoke(query)
unique_results = deduplicate_docs(results)
return {
"messages": [
AIMessage(
content=f'Action: development_database\nQuery: "{query}"\nResults: {len(unique_results)} relevant documents',
additional_kwargs={"documents": unique_results}
)
]
}
else:
return {"messages": [AIMessage(content=response_text)]}
except requests.exceptions.HTTPError as e:
error_msg = f"API Error: {e.response.status_code} - {e.response.text}"
if "insufficient balance" in e.response.text.lower():
error_msg += "\n\nPlease check your DeepSeek account balance."
return {"messages": [AIMessage(content=error_msg)]}
except Exception as e:
return {"messages": [AIMessage(content=f"Processing Error: {str(e)}")]}
# ------------------------------
# Document Evaluation Functions
# ------------------------------
def simple_grade_documents(state: AgentState):
"""Evaluate retrieved document relevance"""
messages = state["messages"]
last_message = messages[-1]
if last_message.additional_kwargs.get("documents"):
print("--- Relevant Documents Found ---")
return "generate"
else:
print("--- No Valid Documents Found ---")
return "rewrite"
def generate(state: AgentState):
"""Generate final answer from documents"""
print("\n--- GENERATING FINAL ANSWER ---")
messages = state["messages"]
try:
# Extract context
user_question = next(msg.content for msg in messages if isinstance(msg, HumanMessage))
documents = messages[-1].additional_kwargs.get("documents", [])
# Format document sources
sources = list(set(
doc.metadata.get('source', 'unknown')
for doc in documents
))
# Create analysis prompt
prompt = f"""Synthesize a technical answer using these documents:
Question: {user_question}
Documents:
{[doc.page_content for doc in documents]}
Requirements:
1. Highlight quantitative metrics
2. Cite document sources (research/development)
3. Note temporal context
4. List potential applications
5. Mention limitations/gaps
"""
# API request configuration
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.3,
"max_tokens": 1024
}
# Execute API call
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
timeout=45
)
response.raise_for_status()
# Format final answer
response_text = response.json()['choices'][0]['message']['content']
formatted_answer = f"{response_text}\n\nSources: {', '.join(sources)}"
return {"messages": [AIMessage(content=formatted_answer)]}
except Exception as e:
return {"messages": [AIMessage(content=f"Generation Error: {str(e)}")]}
def rewrite(state: AgentState):
"""Rewrite unclear queries"""
print("\n--- REWRITING QUERY ---")
messages = state["messages"]
try:
original_query = next(msg.content for msg in messages if isinstance(msg, HumanMessage))
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Clarify this query while preserving technical intent: {original_query}"
}],
"temperature": 0.5,
"max_tokens": 256
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
rewritten = response.json()['choices'][0]['message']['content']
return {"messages": [AIMessage(content=f"Revised Query: {rewritten}")]}
except Exception as e:
return {"messages": [AIMessage(content=f"Rewriting Error: {str(e)}")]}
# ------------------------------
# Workflow Configuration
# ------------------------------
workflow = StateGraph(AgentState)
# Node Registration
workflow.add_node("agent", agent)
workflow.add_node("retrieve", ToolNode(tools))
workflow.add_node("generate", generate)
workflow.add_node("rewrite", rewrite)
# Workflow Structure
workflow.set_entry_point("agent")
workflow.add_conditional_edges(
"agent",
lambda state: "tools" if any(
tool.name in state["messages"][-1].content
for tool in tools
) else END,
{"tools": "retrieve", END: END}
)
workflow.add_conditional_edges(
"retrieve",
simple_grade_documents,
{"generate": "generate", "rewrite": "rewrite"}
)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
app = workflow.compile()
# ------------------------------
# Streamlit UI Implementation
# ------------------------------
def main():
"""Main application interface"""
st.set_page_config(
page_title="AI Research Assistant",
layout="centered",
initial_sidebar_state="expanded"
)
# Dark Theme Configuration
st.markdown("""
<style>
.stApp {
background-color: #0E1117;
color: #FAFAFA;
}
.stTextArea textarea {
background-color: #262730 !important;
color: #FAFAFA !important;
border: 1px solid #3D4051;
}
.stButton>button {
background-color: #2E8B57;
color: white;
border-radius: 4px;
padding: 0.5rem 1rem;
transition: all 0.3s;
}
.stButton>button:hover {
background-color: #3CB371;
transform: scale(1.02);
}
.stAlert {
background-color: #1A1D23 !important;
border: 1px solid #3D4051;
}
.stExpander {
background-color: #1A1D23;
border: 1px solid #3D4051;
}
.data-source {
padding: 0.5rem;
margin: 0.5rem 0;
background-color: #1A1D23;
border-left: 3px solid #2E8B57;
border-radius: 4px;
}
</style>
""", unsafe_allow_html=True)
# Sidebar Configuration
with st.sidebar:
st.header("Technical Databases")
with st.expander("Research Corpus", expanded=True):
st.markdown("""
- AI Model Architectures
- Machine Learning Advances
- Quantum Computing Applications
- Algorithmic Breakthroughs
""")
with st.expander("Development Tracking", expanded=True):
st.markdown("""
- Project Milestones
- System Architecture
- Deployment Status
- Performance Metrics
""")
# Main Interface
st.title("🧠 AI Research Assistant")
st.caption("Technical Analysis and Development Tracking System")
query = st.text_area(
"Enter Technical Query:",
height=150,
placeholder="Example: Compare transformer architectures for medical imaging analysis..."
)
if st.button("Execute Analysis", use_container_width=True):
if not query:
st.warning("Please input a technical query")
return
with st.status("Processing...", expanded=True) as status:
try:
events = []
for event in app.stream({"messages": [HumanMessage(content=query)]}):
events.append(event)
if 'agent' in event:
status.update(label="Decision Making", state="running")
st.session_state.agent_step = event['agent']
if 'retrieve' in event:
status.update(label="Document Retrieval", state="running")
st.session_state.retrieved = event['retrieve']
if 'generate' in event:
status.update(label="Synthesizing Answer", state="running")
st.session_state.final_answer = event['generate']
status.update(label="Analysis Complete", state="complete")
except Exception as e:
status.update(label="Processing Failed", state="error")
st.error(f"""
**System Error**
{str(e)}
Please verify:
- API key validity
- Network connectivity
- Query complexity
""")
if 'final_answer' in st.session_state:
answer = st.session_state.final_answer['messages'][0].content
with st.container():
st.subheader("Technical Analysis")
st.markdown("---")
st.markdown(answer)
if "Sources:" in answer:
st.markdown("""
<div class="data-source">
ℹ️ Document sources are derived from the internal research database
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |