Spaces:
Sleeping
Sleeping
File size: 16,764 Bytes
09a0b53 dd92890 0f83924 b31058d dd92890 b31058d 8588a31 bfe5a86 3cf95b0 dd92890 b31058d dd92890 09a0b53 dd92890 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 1e0350f 09a0b53 9c89976 09a0b53 3cf95b0 b31058d 9c89976 b31058d 9c89976 b31058d 3cf95b0 bfe5a86 b31058d bfe5a86 b31058d 09a0b53 9c89976 b31058d 9c89976 bfe5a86 b31058d bfe5a86 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 9c89976 3cf95b0 b31058d 3cf95b0 b31058d bfe5a86 b31058d bfe5a86 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 bfe5a86 b31058d bfe5a86 3cf95b0 bfe5a86 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 bfe5a86 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 b31058d 3cf95b0 bfe5a86 b31058d 3cf95b0 9c89976 b31058d d94f105 09a0b53 b31058d 09a0b53 3cf95b0 b31058d 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 b31058d 3cf95b0 9c89976 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 9c89976 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 b31058d 3cf95b0 9c89976 b31058d 3cf95b0 9c89976 3cf95b0 ddd0e04 09a0b53 9c89976 09a0b53 3cf95b0 9c89976 3cf95b0 ddd0e04 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 b31058d 3cf95b0 9c89976 b31058d 9c89976 b31058d 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 9c89976 3cf95b0 b31058d 3cf95b0 b31058d 9c89976 b31058d ddd0e04 3cf95b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langgraph.graph import END, StateGraph
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import numpy as np
import os
import streamlit as st
import requests
import hashlib
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
RESEARCH_EMBEDDING = np.random.randn(1536)
DOCUMENT_MAP = {
"CV-Transformer Hybrid Architecture": {
"title": "Research Report: CV-Transformer Model (98% Accuracy)",
"content": """
Hybrid architecture combining CNNs and Transformers achieves 98% image recognition accuracy.
Key equation: $f(x) = \text{Attention}(\text{CNN}(x))$
Validation on ImageNet-1k: Top-1 Accuracy 98.2%, Inference Speed 42ms/img
"""
},
"Transformer Architecture Analysis": {
"title": "Academic Paper: Transformers in NLP",
"content": """
Self-attention mechanism remains core innovation:
$\text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$
GLUE Benchmark Score: 92.4%, Training Efficiency: 1.8x vs RNNs
"""
},
"Quantum ML Frontiers": {
"title": "Quantum Machine Learning Review",
"content": """
Quantum gradient descent enables faster optimization:
$\theta_{t+1} = \theta_t - \eta \nabla_\theta \mathcal{L}(\theta_t)$
100x speedup on optimization tasks, 58% energy reduction
"""
}
}
ANALYSIS_TEMPLATE = """Analyze these technical documents:
{context}
Respond in MARKDOWN with:
1. **Key Technical Contributions** (bullet points with equations)
2. **Novel Methodologies** (algorithms with math notation)
3. **Empirical Results** (comparative metrics)
4. **Applications** (domain-specific implementations)
5. **Limitations** (theoretical/practical boundaries)
Include LaTeX equations where applicable."""
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error("""**Configuration Required**
1. Get DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
2. Set secret: `DEEPSEEK_API_KEY`
3. Rebuild deployment""")
st.stop()
# ------------------------------
# Document Processing System
# ------------------------------
class QuantumDocumentManager:
def __init__(self):
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, document_map: Dict[str, Dict[str, str]], collection_name: str) -> Chroma:
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
docs = []
for key, data in document_map.items():
chunks = splitter.split_text(data["content"])
for chunk in chunks:
docs.append(Document(
page_content=chunk,
metadata={
"title": data["title"],
"source": collection_name,
"hash": hashlib.sha256(chunk.encode()).hexdigest()[:16]
}
))
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Initialize document system
qdm = QuantumDocumentManager()
research_docs = qdm.create_collection(ResearchConfig.DOCUMENT_MAP, "research")
# ------------------------------
# Intelligent Retrieval System
# ------------------------------
class ResearchRetriever:
def __init__(self):
self.retriever = research_docs.as_retriever(
search_type="mmr",
search_kwargs={
'k': 4,
'fetch_k': 20,
'lambda_mult': 0.85
}
)
def retrieve(self, query: str) -> List[Document]:
try:
docs = self.retriever.invoke(query)
if not docs:
raise ValueError("No relevant documents found")
return docs
except Exception as e:
st.error(f"Retrieval Error: {str(e)}")
return []
# ------------------------------
# Robust Processing Core
# ------------------------------
class CognitiveProcessor:
def __init__(self):
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
def process_query(self, prompt: str) -> Dict:
futures = [self.executor.submit(self._api_request, prompt) for _ in range(3)]
return self._best_result([f.result() for f in as_completed(futures)])
def _api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json"
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as Senior AI Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
},
timeout=45
)
response.raise_for_status()
return response.json()
except Exception as e:
return {"error": str(e)}
def _best_result(self, results: List[Dict]) -> Dict:
valid = [r for r in results if "error" not in r]
if not valid:
return {"error": "All API requests failed"}
# Select response with most technical content
contents = [r.get('choices', [{}])[0].get('message', {}).get('content', '') for r in valid]
tech_scores = [len(re.findall(r"\$.*?\$", c)) for c in contents]
return valid[np.argmax(tech_scores)]
# ------------------------------
# Validation Workflow Engine
# ------------------------------
class ResearchWorkflow:
def __init__(self):
self.retriever = ResearchRetriever()
self.processor = CognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
def _build_workflow(self):
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
self.app = self.workflow.compile()
def ingest_query(self, state: AgentState) -> Dict:
try:
query = state["messages"][-1].content
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": {"raw_query": query},
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
try:
docs = self.retriever.retrieve(state["context"]["raw_query"])
if not docs:
return self._error_state("Document correlation failure - no relevant papers found")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {"documents": docs}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
try:
docs = state["context"]["documents"]
context = "\n\n".join([f"### {doc.metadata['title']}\n{doc.page_content}" for doc in docs])
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=context)
response = self.processor.process_query(prompt)
if "error" in response:
raise RuntimeError(response["error"])
analysis = response['choices'][0]['message']['content']
self._validate_analysis_structure(analysis)
return {
"messages": [AIMessage(content=analysis)],
"context": {"analysis": analysis}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
validation_prompt = f"""Validate this technical analysis:
{state["messages"][-1].content}
Check for:
1. Mathematical accuracy
2. Empirical evidence
3. Technical depth
4. Logical consistency
Respond with 'VALID' or 'INVALID'"""
response = self.processor.process_query(validation_prompt)
content = response.get('choices', [{}])[0].get('message', {}).get('content', '')
return {
"messages": [AIMessage(content=f"{state['messages'][-1].content}\n\n## Validation\n{content}")],
"context": {"valid": "VALID" in content}
}
def refine_results(self, state: AgentState) -> Dict:
refinement_prompt = f"""Improve this analysis:
{state["messages"][-1].content}
Focus on:
1. Enhancing mathematical rigor
2. Adding empirical references
3. Strengthening technical arguments"""
response = self.processor.process_query(refinement_prompt)
return {
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
"context": state["context"]
}
def _quality_check(self, state: AgentState) -> str:
return "valid" if state.get("context", {}).get("valid", False) else "invalid"
def _validate_analysis_structure(self, content: str):
required_sections = [
"Key Technical Contributions",
"Novel Methodologies",
"Empirical Results",
"Applications",
"Limitations"
]
missing = [s for s in required_sections if f"## {s}" not in content]
if missing:
raise ValueError(f"Missing critical sections: {', '.join(missing)}")
if not re.search(r"\$.*?\$", content):
raise ValueError("Analysis lacks required mathematical notation")
def _error_state(self, message: str) -> Dict:
return {
"messages": [AIMessage(content=f"❌ {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Research Interface
# ------------------------------
class ResearchInterface:
def __init__(self):
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self):
st.set_page_config(
page_title="NeuroResearch AI",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self):
st.markdown("""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
code {
color: #2ecc71;
background: #002200;
padding: 2px 4px;
border-radius: 4px;
}
</style>
""", unsafe_allow_html=True)
def _build_sidebar(self):
with st.sidebar:
st.title("🔍 Research Database")
for key, data in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(data["title"]):
st.markdown(f"```\n{data['content']}\n```")
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
st.metric("Document Chunks", len(research_docs.get()['ids']))
def _build_main_interface(self):
st.title("🧠 NeuroResearch AI")
query = st.text_area("Research Query:", height=200,
placeholder="Enter technical research question...")
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query)
def _execute_analysis(self, query: str):
try:
with st.spinner("Performing deep technical analysis..."):
result = self.workflow.app.invoke(
{"messages": [HumanMessage(content=query)]}
)
if result.get("context", {}).get("error"):
self._show_error(result["context"].get("error", "Unknown error"))
else:
self._display_results(result)
except Exception as e:
self._show_error(str(e))
def _display_results(self, result):
content = result["messages"][-1].content
with st.expander("Technical Analysis Report", expanded=True):
st.markdown(content)
with st.expander("Source Documents", expanded=False):
for doc in result["context"].get("documents", []):
st.markdown(f"**{doc.metadata['title']}**")
st.code(doc.page_content, language='latex')
def _show_error(self, message):
st.error(f"""
⚠️ Analysis Failed: {message}
Troubleshooting Steps:
1. Check query specificity
2. Verify document connections
3. Ensure mathematical notation in sources
4. Review API key validity
5. Simplify complex query structures
""")
if __name__ == "__main__":
ResearchInterface() |