File size: 11,675 Bytes
06ee039
b97aaed
06ee039
dd92890
0f83924
dd92890
 
8588a31
b68b7bd
bd23f77
dd92890
8f0f735
dd92890
 
 
 
 
8f0f735
 
dd92890
8f0f735
1e0350f
b26cbe4
b97aaed
d94f105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97aaed
b26cbe4
8f0f735
 
 
 
 
 
d94f105
 
 
 
b97aaed
 
8f0f735
 
b97aaed
 
 
 
 
8f0f735
 
 
 
 
b97aaed
8f0f735
 
d94f105
8f0f735
b97aaed
 
d94f105
b97aaed
d94f105
b97aaed
 
d94f105
b97aaed
d94f105
 
b97aaed
 
 
 
 
8f0f735
b97aaed
8f0f735
 
 
 
d94f105
 
8f0f735
dd92890
 
d94f105
dd92890
8f0f735
 
b97aaed
8f0f735
b97aaed
 
 
8f0f735
 
b97aaed
8f0f735
b97aaed
 
 
8f0f735
b97aaed
 
 
 
 
 
 
 
 
 
dd92890
 
b97aaed
dd92890
b97aaed
 
 
 
8f0f735
b97aaed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
b97aaed
 
 
 
 
 
d94f105
b97aaed
 
 
 
 
 
 
d94f105
b97aaed
d94f105
b97aaed
 
d94f105
b97aaed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94f105
b97aaed
 
 
 
d94f105
 
b97aaed
d94f105
 
b97aaed
 
 
 
 
 
 
 
d94f105
b97aaed
 
d94f105
 
b97aaed
d94f105
 
 
b97aaed
 
 
 
 
 
d94f105
b97aaed
 
d94f105
b97aaed
 
d94f105
 
b97aaed
d94f105
b97aaed
 
 
 
 
 
 
 
 
 
9ba4314
bd23f77
b97aaed
2e9c284
8f0f735
b97aaed
 
8f0f735
b97aaed
 
8f0f735
b97aaed
 
 
 
a2dbafb
b97aaed
 
 
 
 
 
 
8f0f735
b97aaed
 
dd92890
b97aaed
 
 
dd92890
b97aaed
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# ------------------------------
# Imports
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, List, Dict, Any
import chromadb
import re
import os
import streamlit as st
import requests
import time
import hashlib
from langchain.tools.retriever import create_retriever_tool
from datetime import datetime

# ------------------------------
# Data
# ------------------------------
research_texts = [
    "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
    "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
    "Latest Trends in Machine Learning Methods Using Quantum Computing",
    "Advancements in Neuromorphic Computing for Energy-Efficient AI Systems",
    "Cross-Modal Learning: Integrating Visual and Textual Representations for Multimodal AI"
]

development_texts = [
    "Project A: UI Design Completed, API Integration in Progress",
    "Project B: Testing New Feature X, Bug Fixes Needed",
    "Product Y: In the Performance Optimization Stage Before Release",
    "Framework Z: Version 3.2 Released with Enhanced Distributed Training Support",
    "DevOps Pipeline: Automated CI/CD Implementation for ML Model Deployment"
]

# ------------------------------
# Configuration
# ------------------------------
class AppConfig:
    def __init__(self):
        self.DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
        self.CHROMA_PATH = "chroma_db"
        self.MAX_RETRIES = 3
        self.RETRY_DELAY = 1.5
        self.DOCUMENT_CHUNK_SIZE = 300
        self.DOCUMENT_OVERLAP = 50
        self.SEARCH_K = 5
        self.SEARCH_TYPE = "mmr"

    def validate(self):
        if not self.DEEPSEEK_API_KEY:
            st.error("""
            **Configuration Error**  
            πŸ”‘ Missing DeepSeek API key.  
            Configure through Hugging Face Space secrets:
            1. Space Settings β†’ Repository secrets
            2. Add secret: DEEPSEEK_API_KEY=your_key
            3. Rebuild Space
            """)
            st.stop()

class ChromaManager:
    def __init__(self, config: AppConfig):
        os.makedirs(config.CHROMA_PATH, exist_ok=True)
        self.client = chromadb.PersistentClient(path=config.CHROMA_PATH)
        self.embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
        
        self.research_collection = self._create_collection(
            research_texts, 
            "research_collection",
            {"category": "research"}
        )
        self.dev_collection = self._create_collection(
            development_texts,
            "development_collection", 
            {"category": "development"}
        )

    def _create_collection(self, documents: List[str], name: str, metadata: dict) -> Chroma:
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=300,
            chunk_overlap=50,
            separators=["\n\n", "\n", "。"]
        )
        docs = splitter.create_documents(documents)
        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=name,
            collection_metadata=metadata
        )

# ------------------------------
# Document Processing
# ------------------------------
class DocumentProcessor:
    @staticmethod
    def deduplicate(docs: List[Any]) -> List[Any]:
        seen = set()
        return [doc for doc in docs 
                if not (hashlib.md5(doc.page_content.encode()).hexdigest() in seen 
                        or seen.add(hashlib.md5(doc.page_content.encode()).hexdigest()))]

    @staticmethod
    def extract_keypoints(docs: List[Any]) -> str:
        categories = {
            "quantum": ["quantum", "qubit"],
            "vision": ["image", "recognition"],
            "nlp": ["transformer", "language"]
        }
        return "\n".join(sorted({
            "- " + {
                "quantum": "Quantum computing breakthroughs",
                "vision": "Computer vision advancements",
                "nlp": "NLP architecture innovations"
            }[cat] 
            for doc in docs 
            for cat, kw in categories.items() 
            if any(k in doc.page_content.lower() for k in kw)
        }))

# ------------------------------
# Workflow
# ------------------------------
class AgentWorkflow:
    def __init__(self, chroma: ChromaManager):
        self.chroma = chroma
        self.workflow = StateGraph(AgentState)
        
        # Define nodes
        self.workflow.add_node("agent", self.agent)
        self.workflow.add_node("retrieve", ToolNode([
            create_retriever_tool(
                chroma.research_collection.as_retriever(),
                "research_tool",
                "Search research documents"
            ),
            create_retriever_tool(
                chroma.dev_collection.as_retriever(),
                "dev_tool",
                "Search development updates"
            )
        ]))
        self.workflow.add_node("generate", self.generate)
        self.workflow.add_node("rewrite", self.rewrite)

        # Define edges
        self.workflow.set_entry_point("agent")
        self.workflow.add_conditional_edges(
            "agent",
            self._tools_condition,
            {"retrieve": "retrieve", "end": END}
        )
        self.workflow.add_conditional_edges(
            "retrieve",
            self._grade_documents,
            {"generate": "generate", "rewrite": "rewrite"}
        )
        self.workflow.add_edge("generate", END)
        self.workflow.add_edge("rewrite", "agent")
        
        self.app = self.workflow.compile()

    class AgentState(TypedDict):
        messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]

    def agent(self, state: AgentState):
        try:
            messages = state["messages"]
            query = messages[-1].content if isinstance(messages[-1], HumanMessage) else messages[-1]['content']
            
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
                json={
                    "model": "deepseek-chat",
                    "messages": [{
                        "role": "user",
                        "content": f"""Analyze this query: "{query}"
                        Respond EXACTLY as:
                        - SEARCH_RESEARCH: <terms> (for research topics)
                        - SEARCH_DEV: <terms> (for development updates)
                        - DIRECT: <answer> (otherwise)"""
                    }]
                }
            ).json()
            
            content = response['choices'][0]['message']['content']
            if "SEARCH_RESEARCH:" in content:
                terms = content.split("SEARCH_RESEARCH:")[1].strip()
                results = self.chroma.research_collection.similarity_search(terms)
                return {"messages": [AIMessage(content=f"Research Results: {str(results)}")]}
            elif "SEARCH_DEV:" in content:
                terms = content.split("SEARCH_DEV:")[1].strip()
                results = self.chroma.dev_collection.similarity_search(terms)
                return {"messages": [AIMessage(content=f"Development Results: {str(results)}")]}
            return {"messages": [AIMessage(content=content)]}
            
        except Exception as e:
            return {"messages": [AIMessage(content=f"Error: {str(e)}")]}

    def generate(self, state: AgentState):
        docs = eval(state["messages"][-1].content.split("Results: ")[1])
        processed = "\n".join([d.page_content[:200] for d in DocumentProcessor.deduplicate(docs)])
        
        response = requests.post(
            "https://api.deepseek.com/v1/chat/completions",
            headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
            json={
                "model": "deepseek-chat",
                "messages": [{
                    "role": "user",
                    "content": f"Summarize these findings:\n{processed}"
                }]
            }
        ).json()
        
        return {"messages": [AIMessage(content=response['choices'][0]['message']['content'])]}

    def rewrite(self, state: AgentState):
        original = state["messages"][0].content
        response = requests.post(
            "https://api.deepseek.com/v1/chat/completions",
            headers={"Authorization": f"Bearer {config.DEEPSEEK_API_KEY}"},
            json={
                "model": "deepseek-chat",
                "messages": [{
                    "role": "user",
                    "content": f"Rephrase this query: {original}"
                }]
            }
        ).json()
        return {"messages": [AIMessage(content=response['choices'][0]['message']['content'])]}

    def _tools_condition(self, state: AgentState):
        return "retrieve" if "Results:" in state["messages"][-1].content else "end"

    def _grade_documents(self, state: AgentState):
        return "generate" if len(eval(state["messages"][-1].content.split("Results: ")[1])) > 0 else "rewrite"

# ------------------------------
# Streamlit App
# ------------------------------
def apply_theme():
    st.markdown("""
    <style>
    .stApp { background: #1a1a1a; color: white; }
    .stTextArea textarea { background: #2d2d2d !important; color: white !important; }
    .stButton>button { background: #2E86C1; transition: 0.3s; }
    .stButton>button:hover { background: #1B4F72; transform: scale(1.02); }
    .data-box { background: #2d2d2d; border-left: 4px solid #2E86C1; padding: 15px; margin: 10px 0; }
    </style>
    """, unsafe_allow_html=True)

def main():
    apply_theme()
    
    with st.sidebar:
        st.header("πŸ“š Databases")
        with st.expander("Research", expanded=True):
            for text in research_texts:
                st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
        with st.expander("Development"):
            for text in development_texts:
                st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)

    st.title("πŸ” AI Research Assistant")
    query = st.text_area("Enter your query:", height=100)
    
    if st.button("Analyze"):
        with st.spinner("Processing..."):
            workflow = AgentWorkflow(chroma_manager)
            results = workflow.app.invoke({"messages": [HumanMessage(content=query)]})
            
            with st.expander("Processing Details", expanded=True):
                st.write("### Raw Results", results)
                
            st.success("### Final Answer")
            st.markdown(results['messages'][-1].content)

# ------------------------------
# Initialization
# ------------------------------
if __name__ == "__main__":
    st.set_page_config(
        page_title="AI Research Assistant",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    try:
        config = AppConfig()
        config.validate()
        chroma_manager = ChromaManager(config)
        main()
    except Exception as e:
        st.error(f"Initialization failed: {str(e)}")