File size: 14,889 Bytes
06ee039
dd92890
06ee039
dd92890
0f83924
dd92890
 
8588a31
b68b7bd
bd23f77
dd92890
 
 
 
 
 
 
 
1e0350f
b26cbe4
dd92890
b26cbe4
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7719bf
06ee039
dd92890
06ee039
dd92890
a1bb249
a2dbafb
dd92890
a2dbafb
dd92890
 
 
 
 
bd23f77
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f83924
dd92890
0f83924
dd92890
 
0f83924
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
dd92890
a2dbafb
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2dbafb
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
 
dd92890
 
 
 
 
 
 
 
 
 
 
bd23f77
 
 
dd92890
bd23f77
 
 
dd92890
bd23f77
 
 
dd92890
bd23f77
 
dd92890
 
 
bd23f77
 
dd92890
 
 
 
 
bd23f77
dd92890
 
 
bd23f77
 
dd92890
 
 
 
bd23f77
0f83924
dd92890
 
 
a2dbafb
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
 
dd92890
 
 
 
 
bd23f77
dd92890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23f77
 
dd92890
 
 
 
 
 
b7719bf
dd92890
 
 
 
bd23f77
dd92890
 
bd23f77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence
import chromadb
import re
import os
import streamlit as st
import requests
from langchain.tools.retriever import create_retriever_tool

# ------------------------------
# Configuration
# ------------------------------
# Get DeepSeek API key from Hugging Face Space secrets
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")

if not DEEPSEEK_API_KEY:
    st.error("""
    **Missing API Configuration**  
    Please configure your DeepSeek API key in Hugging Face Space secrets:
    1. Go to your Space's Settings
    2. Click on 'Repository secrets'
    3. Add a secret named DEEPSEEK_API_KEY
    """)
    st.stop()

# Create directory for Chroma persistence
os.makedirs("chroma_db", exist_ok=True)

# ------------------------------
# ChromaDB Client Configuration
# ------------------------------
chroma_client = chromadb.PersistentClient(path="chroma_db")

# ------------------------------
# Dummy Data: Research & Development Texts
# ------------------------------
research_texts = [
    "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
    "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
    "Latest Trends in Machine Learning Methods Using Quantum Computing"
]

development_texts = [
    "Project A: UI Design Completed, API Integration in Progress",
    "Project B: Testing New Feature X, Bug Fixes Needed",
    "Product Y: In the Performance Optimization Stage Before Release"
]

# ------------------------------
# Text Splitting & Document Creation
# ------------------------------
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
research_docs = splitter.create_documents(research_texts)
development_docs = splitter.create_documents(development_texts)

# ------------------------------
# Creating Vector Stores with Embeddings
# ------------------------------
embeddings = OpenAIEmbeddings(
    model="text-embedding-3-large",
    # dimensions=1024  # Uncomment if needed
)

research_vectorstore = Chroma.from_documents(
    documents=research_docs,
    embedding=embeddings,
    client=chroma_client,
    collection_name="research_collection"
)

development_vectorstore = Chroma.from_documents(
    documents=development_docs,
    embedding=embeddings,
    client=chroma_client,
    collection_name="development_collection"
)

research_retriever = research_vectorstore.as_retriever()
development_retriever = development_vectorstore.as_retriever()

# ------------------------------
# Creating Retriever Tools
# ------------------------------
research_tool = create_retriever_tool(
    research_retriever,
    "research_db_tool",
    "Search information from the research database."
)

development_tool = create_retriever_tool(
    development_retriever,
    "development_db_tool",
    "Search information from the development database."
)

tools = [research_tool, development_tool]

# ------------------------------
# Agent Function & Workflow Functions
# ------------------------------
class AgentState(TypedDict):
    messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]

def agent(state: AgentState):
    print("---CALL AGENT---")
    messages = state["messages"]

    if isinstance(messages[0], tuple):
        user_message = messages[0][1]
    else:
        user_message = messages[0].content

    prompt = f"""Given this user question: "{user_message}"
If it's about research or academic topics, respond EXACTLY in this format:
SEARCH_RESEARCH: <search terms>

If it's about development status, respond EXACTLY in this format:
SEARCH_DEV: <search terms>

Otherwise, just answer directly.
"""

    headers = {
        "Accept": "application/json",
        "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "deepseek-chat",
        "messages": [{"role": "user", "content": prompt}],
        "temperature": 0.7,
        "max_tokens": 1024
    }
    
    try:
        response = requests.post(
            "https://api.deepseek.com/v1/chat/completions",
            headers=headers,
            json=data,
            verify=False,
            timeout=30
        )
        response.raise_for_status()
        
        response_text = response.json()['choices'][0]['message']['content']
        print("Raw response:", response_text)
        
        if "SEARCH_RESEARCH:" in response_text:
            query = response_text.split("SEARCH_RESEARCH:")[1].strip()
            results = research_retriever.invoke(query)
            return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}

        elif "SEARCH_DEV:" in response_text:
            query = response_text.split("SEARCH_DEV:")[1].strip()
            results = development_retriever.invoke(query)
            return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}

        else:
            return {"messages": [AIMessage(content=response_text)]}

    except Exception as e:
        error_msg = f"API Error: {str(e)}"
        if "Insufficient Balance" in str(e):
            error_msg += "\n\nPlease check your DeepSeek API account balance."
        return {"messages": [AIMessage(content=error_msg)]}

def simple_grade_documents(state: AgentState):
    messages = state["messages"]
    last_message = messages[-1]
    print("Evaluating message:", last_message.content)
    
    if "Results: [Document" in last_message.content:
        print("---DOCS FOUND, GO TO GENERATE---")
        return "generate"
    else:
        print("---NO DOCS FOUND, TRY REWRITE---")
        return "rewrite"

def generate(state: AgentState):
    print("---GENERATE FINAL ANSWER---")
    messages = state["messages"]
    question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
    last_message = messages[-1]

    docs = ""
    if "Results: [" in last_message.content:
        results_start = last_message.content.find("Results: [")
        docs = last_message.content[results_start:]
    print("Documents found:", docs)

    headers = {
        "Accept": "application/json",
        "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
        "Content-Type": "application/json"
    }
    
    prompt = f"""Based on these research documents, summarize the latest advancements in AI:
Question: {question}
Documents: {docs}
Focus on extracting and synthesizing the key findings from the research papers.
"""
    
    data = {
        "model": "deepseek-chat",
        "messages": [{
            "role": "user",
            "content": prompt
        }],
        "temperature": 0.7,
        "max_tokens": 1024
    }
    
    try:
        print("Sending generate request to API...")
        response = requests.post(
            "https://api.deepseek.com/v1/chat/completions",
            headers=headers,
            json=data,
            verify=False,
            timeout=30
        )
        response.raise_for_status()
        
        response_text = response.json()['choices'][0]['message']['content']
        print("Final Answer:", response_text)
        return {"messages": [AIMessage(content=response_text)]}
    except Exception as e:
        error_msg = f"Generation Error: {str(e)}"
        return {"messages": [AIMessage(content=error_msg)]}

def rewrite(state: AgentState):
    print("---REWRITE QUESTION---")
    messages = state["messages"]
    original_question = messages[0].content if len(messages) > 0 else "N/A"

    headers = {
        "Accept": "application/json",
        "Authorization": f"Bearer {DEEPSEEK_API_KEY}",
        "Content-Type": "application/json"
    }
    
    data = {
        "model": "deepseek-chat",
        "messages": [{
            "role": "user",
            "content": f"Rewrite this question to be more specific and clearer: {original_question}"
        }],
        "temperature": 0.7,
        "max_tokens": 1024
    }
    
    try:
        print("Sending rewrite request...")
        response = requests.post(
            "https://api.deepseek.com/v1/chat/completions",
            headers=headers,
            json=data,
            verify=False,
            timeout=30
        )
        response.raise_for_status()
        
        response_text = response.json()['choices'][0]['message']['content']
        print("Rewritten question:", response_text)
        return {"messages": [AIMessage(content=response_text)]}
    except Exception as e:
        error_msg = f"Rewrite Error: {str(e)}"
        return {"messages": [AIMessage(content=error_msg)]}

tools_pattern = re.compile(r"Action: .*")

def custom_tools_condition(state: AgentState):
    messages = state["messages"]
    last_message = messages[-1]
    content = last_message.content

    print("Checking tools condition:", content)
    if tools_pattern.match(content):
        print("Moving to retrieve...")
        return "tools"
    print("Moving to END...")
    return END

# ------------------------------
# Workflow Configuration using LangGraph
# ------------------------------
workflow = StateGraph(AgentState)

# Add nodes
workflow.add_node("agent", agent)
retrieve_node = ToolNode(tools)
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("rewrite", rewrite)
workflow.add_node("generate", generate)

# Set entry point
workflow.set_entry_point("agent")

# Define transitions
workflow.add_conditional_edges(
    "agent",
    custom_tools_condition,
    {
        "tools": "retrieve",
        END: END
    }
)

workflow.add_conditional_edges(
    "retrieve",
    simple_grade_documents,
    {
        "generate": "generate",
        "rewrite": "rewrite"
    }
)

workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")

# Compile the workflow
app = workflow.compile()

# ------------------------------
# Processing Function
# ------------------------------
def process_question(user_question, app, config):
    """Process user question through the workflow"""
    events = []
    for event in app.stream({"messages": [("user", user_question)]}, config):
        events.append(event)
    return events

# ------------------------------
# Streamlit App UI (Dark Theme)
# ------------------------------
def main():
    st.set_page_config(
        page_title="AI Research & Development Assistant",
        layout="wide",
        initial_sidebar_state="expanded"
    )

    st.markdown("""
    <style>
    .stApp {
        background-color: #1a1a1a;
        color: #ffffff;
    }
    
    .stTextArea textarea {
        background-color: #2d2d2d !important;
        color: #ffffff !important;
    }
    
    .stButton > button {
        background-color: #4CAF50;
        color: white;
        transition: all 0.3s;
    }
    
    .stButton > button:hover {
        background-color: #45a049;
        transform: scale(1.02);
    }
    
    .data-box {
        background-color: #2d2d2d;
        border-left: 5px solid #2196F3;
    }
    
    .dev-box {
        border-left: 5px solid #4CAF50;
    }
    
    .st-expander {
        background-color: #2d2d2d;
        border: 1px solid #3d3d3d;
    }
    </style>
    """, unsafe_allow_html=True)

    with st.sidebar:
        st.header("πŸ“š Available Data")
        st.subheader("Research Database")
        for text in research_texts:
            st.markdown(f'<div class="data-box research-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
            
        st.subheader("Development Database")
        for text in development_texts:
            st.markdown(f'<div class="data-box dev-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)

    st.title("πŸ€– AI Research & Development Assistant")
    st.markdown("---")

    query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")

    col1, col2 = st.columns([1, 2])
    with col1:
        if st.button("πŸ” Get Answer", use_container_width=True):
            if query:
                try:
                    with st.spinner('Processing your question...'):
                        events = process_question(query, app, {"configurable": {"thread_id": "1"}})
                        
                        for event in events:
                            if 'agent' in event:
                                with st.expander("πŸ”„ Processing Step", expanded=True):
                                    content = event['agent']['messages'][0].content
                                    if "Error" in content:
                                        st.error(content)
                                    elif "Results:" in content:
                                        st.markdown("### πŸ“‘ Retrieved Documents:")
                                        docs_start = content.find("Results:")
                                        docs = content[docs_start:]
                                        st.info(docs)
                            elif 'generate' in event:
                                content = event['generate']['messages'][0].content
                                if "Error" in content:
                                    st.error(content)
                                else:
                                    st.markdown("### ✨ Final Answer:")
                                    st.success(content)
                except Exception as e:
                    st.error(f"""
                    **Processing Error**  
                    {str(e)}  
                    Please check:  
                    - API key configuration  
                    - Account balance  
                    - Network connection
                    """)
            else:
                st.warning("⚠️ Please enter a question first!")

    with col2:
        st.markdown("""
        ### 🎯 How to Use
        1. Enter your question in the text box
        2. Click the search button
        3. Review processing steps
        4. See final answer

        ### πŸ’‘ Example Questions
        - What's new in AI image recognition?
        - How is Project B progressing?
        - Recent machine learning trends?
        """)

if __name__ == "__main__":
    main()