Spaces:
Sleeping
Sleeping
File size: 17,510 Bytes
06ee039 e1707aa 06ee039 e1707aa dd92890 0f83924 dd92890 8588a31 b68b7bd bd23f77 dd92890 be6f117 dd92890 be6f117 dd92890 be6f117 1e0350f d596733 b26cbe4 ddd0e04 be6f117 d596733 be6f117 ddd0e04 be6f117 ddd0e04 be6f117 ddd0e04 eeb0aa2 be6f117 e1707aa be6f117 ddd0e04 d596733 d94f105 be6f117 d596733 be6f117 e1707aa eeb0aa2 be6f117 d94f105 ddd0e04 be6f117 d94f105 be6f117 d94f105 ddd0e04 be6f117 ddd0e04 dd92890 be6f117 dd92890 be6f117 eeb0aa2 be6f117 eeb0aa2 be6f117 ddd0e04 be6f117 dd92890 be6f117 3ae27aa be6f117 ddd0e04 be6f117 eeb0aa2 be6f117 ddd0e04 be6f117 d94f105 be6f117 ddd0e04 be6f117 b97aaed be6f117 ddd0e04 be6f117 e1707aa be6f117 d94f105 be6f117 d94f105 be6f117 eeb0aa2 be6f117 eeb0aa2 be6f117 eeb0aa2 be6f117 e1707aa eeb0aa2 e1707aa eeb0aa2 be6f117 c9ef26c be6f117 3813a52 be6f117 c9ef26c be6f117 eeb0aa2 be6f117 ddd0e04 be6f117 ddd0e04 be6f117 e1707aa be6f117 ddd0e04 be6f117 c8c0337 be6f117 ddd0e04 be6f117 652f56f be6f117 e1707aa be6f117 937cc33 be6f117 937cc33 c9ef26c be6f117 937cc33 be6f117 937cc33 be6f117 937cc33 be6f117 937cc33 be6f117 937cc33 be6f117 937cc33 be6f117 937cc33 ddd0e04 c9ef26c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# ------------------------------
# Imports & Initial Configuration
# ------------------------------
import streamlit as st
# Set the page configuration immediately—this must be the first Streamlit command.
st.set_page_config(page_title="NeuroResearch AI", layout="wide", initial_sidebar_state="expanded")
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import re
import os
import requests
import hashlib
import json
import time
from langchain.tools.retriever import create_retriever_tool
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
DOCUMENT_MAP = {
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
"CV-Transformer Hybrid Architecture",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
"Transformer Architecture Analysis",
"Latest Trends in Machine Learning Methods Using Quantum Computing":
"Quantum ML Frontiers"
}
ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
{context}
Respond with:
1. Key Technical Contributions (bullet points)
2. Novel Methodologies
3. Empirical Results (with metrics)
4. Potential Applications
5. Limitations & Future Directions
Format: Markdown with LaTeX mathematical notation where applicable
"""
# Validate API key configuration
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error("""**Research Portal Configuration Required**
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
3. Rebuild deployment""")
st.stop()
# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
def __init__(self):
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
docs = splitter.create_documents(documents)
# Debug: log the number of chunks created for the collection.
st.write(f"Created {len(docs)} chunks for collection '{collection_name}'")
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Initialize document collections
qdm = QuantumDocumentManager()
research_docs = qdm.create_collection([
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
], "research")
development_docs = qdm.create_collection([
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
], "development")
# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
def __init__(self):
self.retrievers = {
"research": research_docs.as_retriever(
search_type="mmr",
search_kwargs={
'k': 4,
'fetch_k': 20,
'lambda_mult': 0.85
}
),
"development": development_docs.as_retriever(
search_type="similarity",
search_kwargs={'k': 3}
)
}
def retrieve(self, query: str, domain: str) -> List[Any]:
try:
results = self.retrievers[domain].invoke(query)
st.write(f"[DEBUG] Retrieved {len(results)} documents for query: '{query}' in domain '{domain}'")
return results
except KeyError:
st.error(f"[ERROR] Retrieval domain '{domain}' not found.")
return []
retriever = ResearchRetriever()
# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
def __init__(self):
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
futures = []
for _ in range(3): # Triple redundancy for robustness
futures.append(self.executor.submit(
self._execute_api_request,
prompt
))
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
st.error(f"Processing Error: {str(e)}")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as Senior AI Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
},
timeout=45
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
valid = [r for r in results if "error" not in r]
if not valid:
return {"error": "All API requests failed"}
# Choose the result with the longest content for robustness.
return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
# ------------------------------
# Research Workflow Engine
# ------------------------------
class ResearchWorkflow:
def __init__(self):
self.processor = CognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
def _build_workflow(self):
# Register nodes in the state graph
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
self.app = self.workflow.compile()
def ingest_query(self, state: AgentState) -> Dict:
try:
query = state["messages"][-1].content
st.write(f"[DEBUG] Ingesting query: {query}")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": {"raw_query": query},
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
try:
query = state["context"]["raw_query"]
docs = retriever.retrieve(query, "research")
st.write(f"[DEBUG] Retrieved {len(docs)} documents from retrieval node.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
"documents": docs,
"retrieval_time": time.time()
}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
try:
# Ensure documents are present before proceeding.
if "documents" not in state["context"] or not state["context"]["documents"]:
return self._error_state("No documents retrieved; please check your query or retrieval process.")
# Concatenate all document content for analysis.
docs = "\n\n".join([d.page_content for d in state["context"]["documents"] if hasattr(d, "page_content")])
st.write(f"[DEBUG] Analyzing content from {len(state['context']['documents'])} documents.")
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
response = self.processor.process_query(prompt)
if "error" in response:
return self._error_state(response["error"])
return {
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
"context": {"analysis": response}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
analysis = state["messages"][-1].content
validation_prompt = f"""Validate research analysis:
{analysis}
Check for:
1. Technical accuracy
2. Citation support
3. Logical consistency
4. Methodological soundness
Respond with 'VALID' or 'INVALID'"""
response = self.processor.process_query(validation_prompt)
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
}
def refine_results(self, state: AgentState) -> Dict:
refinement_prompt = f"""Refine this analysis:
{state["messages"][-1].content}
Improve:
1. Technical precision
2. Empirical grounding
3. Theoretical coherence"""
response = self.processor.process_query(refinement_prompt)
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
def _quality_check(self, state: AgentState) -> str:
content = state["messages"][-1].content
return "valid" if "VALID" in content else "invalid"
def _error_state(self, message: str) -> Dict:
st.write(f"[ERROR] {message}")
return {
"messages": [AIMessage(content=f"❌ {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Research Interface
# ------------------------------
class ResearchInterface:
def __init__(self):
self.workflow = ResearchWorkflow()
# Do not call st.set_page_config here because it has already been called at the top.
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self):
st.markdown("""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
def _build_sidebar(self):
with st.sidebar:
st.title("🔍 Research Database")
st.subheader("Technical Papers")
for title, short in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(short):
st.markdown(f"```\n{title}\n```")
st.subheader("Analysis Metrics")
st.metric("Vector Collections", 2)
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
def _build_main_interface(self):
st.title("🧠 NeuroResearch AI")
query = st.text_area("Research Query:", height=200,
placeholder="Enter technical research question...")
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query)
def _execute_analysis(self, query: str):
try:
with st.spinner("Initializing Quantum Analysis..."):
results = self.workflow.app.stream(
{"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
)
for event in results:
self._render_event(event)
st.success("✅ Analysis Completed Successfully")
except Exception as e:
st.error(f"""**Analysis Failed**
{str(e)}
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints""")
def _render_event(self, event: Dict):
if 'ingest' in event:
with st.container():
st.success("✅ Query Ingested")
elif 'retrieve' in event:
with st.container():
docs = event['retrieve']['context']['documents']
st.info(f"📚 Retrieved {len(docs)} documents")
with st.expander("View Retrieved Documents", expanded=False):
for i, doc in enumerate(docs, 1):
st.markdown(f"**Document {i}**")
st.code(doc.page_content, language='text')
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Technical Analysis Report", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
if "VALID" in content:
st.success("✅ Validation Passed")
with st.expander("View Validated Analysis", expanded=True):
st.markdown(content.split("Validation:")[0])
else:
st.warning("⚠️ Validation Issues Detected")
with st.expander("View Validation Details", expanded=True):
st.markdown(content)
if __name__ == "__main__":
ResearchInterface()
|