File size: 17,573 Bytes
c08faed
 
 
 
b5fce9d
 
 
 
 
486ca98
c224edd
5bd4d74
486ca98
c08faed
c8e629f
b5fce9d
c8e629f
486ca98
 
51fb89c
 
486ca98
 
 
 
 
 
b5fce9d
486ca98
 
b5fce9d
486ca98
9940006
b5fce9d
9940006
5effbd3
9940006
5effbd3
0e9d8f9
c8e629f
 
 
 
 
9940006
 
c224edd
 
9940006
 
 
 
c8e629f
06fc0da
c8e629f
06fc0da
 
c8e629f
 
0e9d8f9
486ca98
 
5effbd3
9940006
486ca98
06fc0da
c8e629f
9940006
486ca98
 
c224edd
 
9940006
 
06fc0da
9940006
 
c8e629f
9940006
 
 
 
 
0e9d8f9
06fc0da
9940006
5effbd3
 
1956035
9940006
c224edd
5bd4d74
9940006
c8e629f
 
9940006
c8e629f
 
5effbd3
c8e629f
9940006
c224edd
9940006
 
 
 
b5fce9d
06fc0da
1956035
c224edd
5effbd3
0e9d8f9
06fc0da
486ca98
c224edd
1956035
486ca98
 
 
 
 
 
0e9d8f9
c224edd
0e9d8f9
486ca98
0e9d8f9
 
272b87c
486ca98
c224edd
06fc0da
 
 
 
 
0e9d8f9
 
 
 
 
486ca98
0e9d8f9
486ca98
 
06fc0da
0e9d8f9
486ca98
0e9d8f9
c8e629f
0e9d8f9
06fc0da
 
 
c8e629f
486ca98
06fc0da
c8e629f
b5fce9d
486ca98
5effbd3
486ca98
c224edd
0e9d8f9
486ca98
06fc0da
486ca98
 
 
 
c8e629f
486ca98
c224edd
 
 
 
 
 
 
 
9940006
c8e629f
486ca98
c224edd
1956035
486ca98
f72077b
c224edd
 
 
 
 
 
 
 
 
 
486ca98
 
c224edd
 
 
 
9940006
 
0e9d8f9
486ca98
 
 
 
0e9d8f9
9940006
 
486ca98
c224edd
486ca98
 
 
 
c8e629f
486ca98
 
9940006
f7b84f1
c08faed
c8e629f
0e9d8f9
 
 
c224edd
0e9d8f9
486ca98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import io
import json
import warnings
import google.generativeai as genai
import os
from typing import List, Dict, Any, Tuple, Optional
import re

# --- Configuration & Constants ---
warnings.filterwarnings('ignore')
MAX_DASHBOARD_PLOTS = 10
CSS = """
#app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; padding-top: 10px; }
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
.sidebar { background-color: #111827 !important; padding: 15px; border-right: 1px solid #374151 !important; min-height: 100vh; }
.sidebar .gr-button { width: 100%; text-align: left !important; background: none !important; border: none !important; box-shadow: none !important; color: #d1d5db !important; font-size: 16px !important; padding: 12px 10px !important; margin-bottom: 8px !important; border-radius: 8px !important; transition: background-color 0.2s ease; }
.sidebar .gr-button:hover { background-color: #374151 !important; }
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; }
.explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; }
"""

class DataExplorerApp:
    """A professional-grade, AI-powered data exploration application."""

    def __init__(self):
        self.demo = self._build_ui()

    def _build_ui(self) -> gr.Blocks:
        with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
            state_var = gr.State({})
            
            # Component Definition
            cockpit_btn = gr.Button("πŸ“Š Data Cockpit", elem_classes="selected", elem_id="cockpit")
            deep_dive_btn = gr.Button("πŸ” Deep Dive Builder", elem_id="deep_dive")
            copilot_btn = gr.Button("πŸ€– Chief Data Scientist", elem_id="co-pilot")
            file_input = gr.File(label="πŸ“ Upload CSV File", file_types=[".csv"])
            status_output = gr.Markdown("Status: Awaiting data...")
            api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key to enable AI...")
            suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
            rows_stat, cols_stat = gr.Textbox("0", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
            quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, show_label=False), gr.Textbox("0", interactive=False, show_label=False)
            suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
            plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
            x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
            y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
            add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard", interactive=False)
            dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)]
            chatbot = gr.Chatbot(height=500, label="Conversation", show_copy_button=True, avatar_images=(None, "bot.png"))
            copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
            copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)
            chat_input, chat_submit_btn = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4), gr.Button("Ask AI", variant="primary", interactive=False)
            
            # Layout Arrangement
            with gr.Row():
                with gr.Column(scale=1, elem_classes="sidebar"):
                    gr.Markdown("## πŸš€ AI Explorer Pro", elem_id="app-title"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
                    file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
                with gr.Column(scale=4):
                    welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)]
                    with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin your analysis.")
                    with cockpit_page:
                        gr.Markdown("## πŸ“Š Data Cockpit: At-a-Glance Overview")
                        with gr.Row():
                            for title, stat_comp in [("Rows", rows_stat), ("Columns", cols_stat), ("Data Quality", quality_stat), ("Date/Time Cols", time_cols_stat)]:
                                with gr.Column(elem_classes="stat-card"): gr.Markdown(f"<div class='stat-card-title'>{title}</div>"); stat_comp
                        with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons]
                    with deep_dive_page:
                        gr.Markdown("## πŸ” Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.")
                        with gr.Row(): plot_type_dd; x_col_dd; y_col_dd
                        with gr.Row(): add_plot_btn; clear_plots_btn
                        with gr.Column(): [plot for plot in dashboard_plots]
                    with copilot_page:
                        gr.Markdown("## πŸ€– Chief Data Scientist: Your AI Partner"); chatbot
                        with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
                        with gr.Row(): chat_input; chat_submit_btn
            
            # Event Handlers Registration
            pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn]
            for i, btn in enumerate(nav_buttons):
                btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
                    lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)

            file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
                state_var, status_output, *pages, rows_stat, cols_stat, quality_stat, time_cols_stat, x_col_dd, y_col_dd, add_plot_btn])

            api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
            chat_input.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[chat_input], outputs=[chat_submit_btn])
            
            plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
            add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, clear_plots_btn, *dashboard_plots])
            clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, clear_plots_btn, *dashboard_plots])
            
            suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
            for btn in suggestion_buttons:
                btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input])
            
            chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
            chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
        return demo

    def launch(self): self.demo.launch(debug=True)

    # --- Backend Logic Methods ---
    def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
        visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3}
        return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
    
    def _update_plot_controls(self, plot_type: str) -> gr.update: return gr.update(visible=plot_type in ['scatter', 'box'])

    def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
        try:
            df = pd.read_csv(file_obj.name, low_memory=False)
            metadata = self._extract_dataset_metadata(df)
            state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
            rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
            page_updates = self._switch_page("cockpit", [0,1,2,3])
            return (state, f"βœ… **{os.path.basename(file_obj.name)}** loaded.", *page_updates, f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
                    gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
        except Exception as e:
            gr.Error(f"File Load Error: {e}"); page_updates = self._switch_page("welcome", [0,1,2,3]);
            return {}, f"❌ Error: {e}", *page_updates, "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)

    def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
        rows, cols, quality = df.shape[0], df.shape[1], round((df.notna().sum().sum() / (df.size)) * 100, 1) if df.size > 0 else 0
        return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
                'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
                'dtypes_head': df.head(3).to_string(), 'data_quality': quality}

    def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> List[Any]:
        dashboard_plots = state.get('dashboard_plots', [])
        if len(dashboard_plots) >= MAX_DASHBOARD_PLOTS:
            gr.Warning(f"Dashboard is full. Max {MAX_DASHBOARD_PLOTS} plots."); return [state, gr.update(interactive=True), *self._get_plot_updates(state)]
        if not x_col: gr.Warning("Please select an X-axis column."); return [state, gr.update(interactive=True), *self._get_plot_updates(state)]
        df, title = state.get('df'), f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}"
        try:
            fig=None;
            if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
            elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
            elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
            elif plot_type == 'bar': fig = px.bar(df[x_col].value_counts().nlargest(20), title=f"Top 20 for {x_col}")
            if fig:
                fig.update_layout(template="plotly_dark"); dashboard_plots.append(fig); gr.Info(f"Added '{title}' to dashboard.")
            return [state, gr.update(interactive=True), *self._get_plot_updates(state)]
        except Exception as e: gr.Error(f"Plotting Error: {e}"); return [state, gr.update(interactive=True), *self._get_plot_updates(state)]
    
    def _get_plot_updates(self, state: Dict) -> List[gr.update]:
        plots = state.get('dashboard_plots', [])
        return [gr.update(value=plots[i] if i < len(plots) else None, visible=i < len(plots)) for i in range(MAX_DASHBOARD_PLOTS)]

    def clear_dashboard(self, state: Dict) -> List[Any]:
        state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return [state, gr.update(interactive=False), *self._get_plot_updates(state)]

    def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
        if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
        if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
        metadata, columns = state.get('metadata', {}), state.get('metadata', {}).get('columns', [])
        prompt = f"From columns {columns}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
        try:
            genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
            return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
        except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5

    def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
        return *self._switch_page("co-pilot", [0,1,2,3]), question

    def _sanitize_and_parse_json(self, raw_text: str) -> Dict:
        """Cleans and parses a JSON string from an LLM response."""
        # Remove markdown code blocks
        clean_text = re.sub(r'```json\n?|```', '', raw_text).strip()
        # Escape single backslashes that are not already escaped
        clean_text = re.sub(r'(?<!\\)\\(?!["\\/bfnrtu])', r'\\\\', clean_text)
        return json.loads(clean_text)

    def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
        if not user_message.strip(): return history, *[gr.update()]*4
        if not api_key or not state:
            history.append((user_message, "I need a Gemini API key and a dataset to work.")); return history, *[gr.update(visible=False)]*4
        
        history.append((user_message, "Thinking... πŸ€”")); yield history, *[gr.update(visible=False)]*4
        
        metadata, dtypes_head = state.get('metadata', {}), state.get('metadata', {}).get('dtypes_head', 'No metadata available.')
        prompt = f"""You are 'Chief Data Scientist', an expert AI analyst. Your goal is to answer a user's question about a pandas DataFrame (`df`) by writing and executing Python code.
        **Instructions:**
        1. **Analyze:** Understand the user's intent. Infer the best plot type.
        2. **Plan:** Briefly explain your plan.
        3. **Code:** Write Python code. Use `fig` for plots (`template='plotly_dark'`) and `result_df` for tables.
        4. **Insight:** Provide a one-sentence business insight.
        5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
        **Metadata:** {dtypes_head}
        **User Question:** "{user_message}"
        """
        try:
            genai.configure(api_key=api_key)
            # CRITICAL FIX: Use the new sanitizer function
            response_json = self._sanitize_and_parse_json(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
            
            plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
            stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
            
            history[-1] = (user_message, f"**Plan:** {plan}")
            explanation = f"**Insight:** {insight}"
            if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
            if error: gr.Error(f"AI Code Execution Failed: {error}")
            
            yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
                   gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
        except Exception as e:
            history[-1] = (user_message, f"I encountered an error processing the AI response. Please rephrase your question.\n\n**Details:** `{str(e)}`")
            yield history, *[gr.update(visible=False)]*4
            
    def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
        try:
            output_buffer = io.StringIO()
            with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
            return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
        except Exception as e: return None, None, None, str(e)

if __name__ == "__main__":
    if not os.path.exists("bot.png"):
        try:
            from PIL import Image
            Image.new('RGB', (1, 1)).save('bot.png')
        except ImportError: print("Pillow not installed, cannot create dummy bot.png.")
    
    app = DataExplorerApp()
    app.launch()