Spaces:
Running
Running
File size: 5,321 Bytes
0e95308 2dff2c5 bf8e143 2dff2c5 0e95308 bf8e143 0e95308 bf8e143 0e95308 2dff2c5 3e83acd 2dff2c5 0e95308 bf8e143 2dff2c5 0e95308 2dff2c5 bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 bf8e143 0e95308 2dff2c5 04356f4 2dff2c5 cb720fe 0280e01 2dff2c5 0280e01 04356f4 2dff2c5 04356f4 0280e01 7b27360 2978c6a 2dff2c5 04356f4 2978c6a a9f7e8d 2978c6a a9f7e8d 04356f4 2978c6a 04356f4 2dff2c5 04356f4 2dff2c5 2978c6a 2dff2c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import json
from sentence_transformers import SentenceTransformer, util
from groq import Groq
from datetime import datetime
import os
import pandas as pd
from datasets import load_dataset, Dataset
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Load similarity model
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Config
HF_DATASET_REPO = "midrees2806/unmatched_queries"
HF_TOKEN = os.getenv("HF_TOKEN")
# Greeting list
GREETINGS = [
"hi", "hello", "hey", "good morning", "good afternoon", "good evening",
"assalam o alaikum", "salam", "aoa", "hi there",
"hey there", "greetings"
]
# Load local dataset
try:
with open('dataset.json', 'r') as f:
dataset = json.load(f)
if not all(isinstance(item, dict) and 'Question' in item and 'Answer' in item for item in dataset):
raise ValueError("Invalid dataset structure")
except Exception as e:
print(f"Error loading dataset: {e}")
dataset = []
# Precompute embeddings
dataset_questions = [item.get("Question", "").lower().strip() for item in dataset]
dataset_answers = [item.get("Answer", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)
# Save unmatched queries to Hugging Face
def manage_unmatched_queries(query: str):
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
try:
ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
df = ds["train"].to_pandas()
except:
df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
if query not in df["Query"].values:
new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
updated_ds = Dataset.from_pandas(df)
updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
except Exception as e:
print(f"Failed to save query: {e}")
# Query Groq LLM
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
try:
chat_completion = groq_client.chat.completions.create(
messages=[{
"role": "user",
"content": prompt
}],
model=model_name,
temperature=0.7,
max_tokens=500
)
return chat_completion.choices[0].message.content.strip()
except Exception as e:
print(f"Error querying Groq API: {e}")
return ""
# Main logic function to be called from Gradio
def get_best_answer(user_input):
if not user_input.strip():
return "Please enter a valid question."
user_input_lower = user_input.lower().strip()
if len(user_input_lower.split()) < 3 and not any(greet in user_input_lower for greet in GREETINGS):
return "Please ask your question properly with at least 3 words."
if any(greet in user_input_lower for greet in GREETINGS):
greeting_response = query_groq_llm(
f"You are an official assistant for University of Education Lahore. "
f"Respond to this greeting in a friendly and professional manner: {user_input}"
)
return greeting_response if greeting_response else "Hello! How can I assist you today?"
if any(keyword in user_input_lower for keyword in ["fee structure", "fees structure", "semester fees", "semester fee"]):
return (
"π° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
"You'll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
"π https://ue.edu.pk/allfeestructure.php"
)
user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
best_match_idx = similarities.argmax().item()
best_score = similarities[best_match_idx].item()
if best_score < 0.65:
manage_unmatched_queries(user_input)
if best_score >= 0.65:
original_answer = dataset_answers[best_match_idx]
prompt = f"""As an official assistant for University of Education Lahore, provide a clear response:
Question: {user_input}
Original Answer: {original_answer}
Improved Answer:"""
else:
prompt = f"""As an official assistant for University of Education Lahore, provide a helpful response:
Include relevant details about university policies.
If unsure, direct to official channels.
Question: {user_input}
Official Answer:"""
llm_response = query_groq_llm(prompt)
if llm_response:
for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]:
if marker in llm_response:
return llm_response.split(marker)[-1].strip()
return llm_response
else:
return dataset_answers[best_match_idx] if best_score >= 0.65 else (
"For official information:\n"
"π +92-42-99262231-33\n"
"βοΈ [email protected]\n"
"π https://ue.edu.pk"
)
|