File size: 4,591 Bytes
cd650c7 9cbb806 418de0b d04019f 18cb91d 97425d1 d04019f 18cb91d 97425d1 09b14bf adba430 923f75f d04019f 97425d1 8115786 97425d1 d04019f adba430 97425d1 d04019f 97425d1 d04019f 97425d1 418de0b fa4d0d9 18cb91d d04019f 7b026a2 18cb91d a5056fa 18cb91d d53066f 18cb91d 97425d1 18cb91d 97425d1 a5056fa 18cb91d a5056fa 79a6f49 d04019f 7b026a2 18cb91d fa4d0d9 18cb91d 34421df 18cb91d 9cbb806 d04019f 418de0b 1fd65af 418de0b 1fd65af 79a6f49 97425d1 18cb91d 418de0b adba430 09b14bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
from huggingface_hub import InferenceClient
import gradio as gr
import random
import pandas as pd
from io import BytesIO
import csv
import os
import io
import tempfile
import re
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
def translate_to_english(text, source_lang):
encoded_input = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id("en"))
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text
def translate_to_azerbaijani(text):
encoded_input = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id("az"))
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text
def extract_text_from_excel(file):
df = pd.read_excel(file)
text = ' '.join(df['Unnamed: 1'].astype(str))
source_lang = "az" # Azerbaijani
english_text = translate_to_english(text, source_lang)
return english_text
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
azerbaijani_output = translate_to_azerbaijani(output)
with open(filename, mode='a', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow([sentence, azerbaijani_output])
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
text = extract_text_from_excel(file)
sentences = text.split('.')
random.shuffle(sentences) # Shuffle sentences
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
fieldnames = ['Original Sentence', 'Generated Sentence']
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
writer.writeheader()
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
for _ in range(num_similar_sentences):
if not generated_sentences:
break
generated_sentence = generated_sentences.pop(random.randrange(len(generated_sentences)))
writer.writerow({'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
tmp_path = tmp.name
return tmp_path
gr.Interface(
fn=generate,
inputs=[
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
gr.Slider(label="Number of similar sentences", value=10, minimum=1, maximum=20, step=1, interactive=True, info="Number of similar sentences to generate for each original sentence"),
],
outputs=gr.File(label="Synthetic Data "),
title="SDG",
description="AYE QABIL.",
allow_flagging="never",
).launch() |