Spaces:
Sleeping
Sleeping
File size: 5,215 Bytes
57b4d6e 9643386 133fb5d 313728a 133fb5d 313728a 133fb5d 3d80884 bb32dda 93e8de0 133fb5d 3d80884 1bd92fa fc38a48 9643386 313728a fc38a48 313728a fc38a48 313728a fc38a48 313728a fc38a48 313728a fc38a48 313728a 9643386 313728a 9643386 313728a 57b4d6e 9643386 313728a 9643386 133fb5d 1bd92fa 133fb5d 3d80884 1bd92fa 3d80884 133fb5d 3d80884 133fb5d bb32dda 594af3a fc38a48 6f3e953 fc38a48 7b18cbe fc38a48 bb32dda fc38a48 883ce52 fc38a48 bb32dda ccc2bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import pandas as pd
import numpy as np
import joblib
from skimage.measure import shannon_entropy
from skimage.color import rgb2hsv
from scipy.ndimage import generic_filter
import cv2
from PIL import Image
from sklearn.preprocessing import LabelEncoder
# Initialize LabelEncoder for gender encoding
gender_encoder = LabelEncoder()
gender_encoder.fit(['Female', 'Male']) # Ensure that the labels are ordered
# Function to extract features from the image
def extract_features(image):
# Convert PIL image to NumPy array
image = np.array(image)
# Extract RGB means
meanr = np.mean(image[:, :, 0]) # Red channel
meang = np.mean(image[:, :, 1]) # Green channel
meanb = np.mean(image[:, :, 2]) # Blue channel
# Convert to HSI and compute HHR
hsv_image = rgb2hsv(image)
hue = hsv_image[:, :, 0]
high_hue_pixels = np.sum(hue > 0.95)
total_pixels = hue.size
HHR = high_hue_pixels / total_pixels
# Convert to Grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Compute Entropy
Ent = shannon_entropy(gray_image)
# Compute Brightness
B = np.mean(gray_image)
# Sliding window for gray-level features
def g1_filter(window):
return window[4] - np.min(window)
def g2_filter(window):
return np.max(window) - window[4]
def g3_filter(window):
return window[4] - np.mean(window)
def g4_filter(window):
return np.std(window)
def g5_filter(window):
return window[4]
# Apply filters with 3x3 window
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
# Return features
return {
"meanr": meanr,
"meang": meang,
"meanb": meanb,
"HHR": HHR,
"Ent": Ent,
"B": B,
"g1": g1,
"g2": g2,
"g3": g3,
"g4": g4,
"g5": g5,
}
# Function to check if the image is a valid file format
def check_image_format(filepath):
try:
# Try opening the image using PIL
with Image.open(filepath) as img:
img.verify() # Verify if it's a valid image file
return True
except Exception as e:
print(f"Error opening image: {e}")
return False
# Function to predict hemoglobin value with label encoding for gender
def predict_hemoglobin(age, gender, image):
try:
# Ensure the image is not None
if image is None:
return "Error: No image uploaded. Please upload an image."
# Check if the image is valid
if not isinstance(image, Image.Image):
return "Error: Invalid image format. Please upload a valid image file."
# Extract features from the image
features = extract_features(image)
# Use LabelEncoder to convert gender to numerical value
features['Gender'] = gender_encoder.transform([gender])[0]
features['Age'] = age
# Create a DataFrame for features (do not include Hgb, as it's the predicted value)
features_df = pd.DataFrame([features])
# Load the trained model, scaler, and label encoder
svr_model = joblib.load('svr_model (1).pkl') # Replace with the actual path to your model file
scaler = joblib.load('minmax_scaler.pkl') # Replace with the actual path to your scaler file
# Ensure that features_df matches the expected training feature set (without 'Hgb')
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
for col in expected_columns:
if col not in features_df:
features_df[col] = 0 # Or some default value to match the expected columns.
features_df = features_df[expected_columns] # Ensure the correct order of columns
# Apply scaling (do not include 'Hgb' as it is the target)
features_df_scaled = scaler.transform(features_df)
# Predict hemoglobin using the trained SVR model
hemoglobin = svr_model.predict(features_df_scaled)[0]
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
except Exception as e:
print(f"An error occurred during prediction: {e}")
return "An error occurred during prediction. Please try again."
# Gradio interface
with gr.Blocks() as anemia_detection_app:
gr.Markdown("# Hemoglobin Prediction App")
with gr.Row():
age_input = gr.Number(label="Age", value=25)
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male")
image_input = gr.Image(label="Upload Retinal Image", type="pil")
output_text = gr.Textbox(label="Predicted Hemoglobin Value")
predict_button = gr.Button("Predict")
predict_button.click(
fn=predict_hemoglobin,
inputs=[age_input, gender_input, image_input],
outputs=output_text
)
# Run the app
if __name__ == "__main__":
anemia_detection_app.launch()
|