File size: 9,749 Bytes
5f5f8de
6404fd8
5f5f8de
 
a8dcc53
 
 
 
6404fd8
 
a8dcc53
 
5f5f8de
a8dcc53
 
 
 
 
121ef90
a8dcc53
 
 
 
 
5f5f8de
a8dcc53
6404fd8
 
a8dcc53
6404fd8
 
 
 
a8dcc53
6404fd8
 
a8dcc53
 
6404fd8
 
a8dcc53
 
 
 
 
 
 
 
 
 
6404fd8
 
a8dcc53
 
6404fd8
 
 
a8dcc53
 
6404fd8
a8dcc53
6404fd8
 
a8dcc53
6404fd8
 
a8dcc53
121ef90
a8dcc53
 
 
 
 
 
121ef90
6404fd8
121ef90
 
38dd749
a8dcc53
121ef90
6404fd8
a8dcc53
121ef90
6404fd8
c2dd28c
a8dcc53
 
 
 
 
cb15139
6404fd8
cb15139
6404fd8
a8dcc53
cb15139
6404fd8
 
cb15139
a8dcc53
 
6404fd8
 
a8dcc53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb15139
a8dcc53
6404fd8
 
a8dcc53
6404fd8
121ef90
a8dcc53
 
6404fd8
a8dcc53
6404fd8
121ef90
6404fd8
 
 
 
a8dcc53
6404fd8
 
 
 
 
a8dcc53
 
 
 
 
 
 
a53e1b6
6404fd8
a8dcc53
a53e1b6
5f5f8de
6404fd8
 
5f5f8de
a8dcc53
 
105179a
6404fd8
 
a8dcc53
 
6404fd8
a8dcc53
 
 
 
 
 
 
 
 
 
 
 
 
a53e1b6
a8dcc53
6404fd8
a53e1b6
a8dcc53
 
 
 
 
 
 
 
 
 
 
 
6404fd8
a8dcc53
cb7bbf3
6404fd8
a8dcc53
 
cb7bbf3
a8dcc53
 
5f5f8de
 
a8dcc53
121ef90
a8dcc53
 
 
 
 
 
 
5f5f8de
a8dcc53
 
6404fd8
5f5f8de
a8dcc53
6404fd8
a8dcc53
6404fd8
a8dcc53
6404fd8
 
121ef90
6404fd8
a8dcc53
 
 
 
5f5f8de
 
6404fd8
5f5f8de
a8dcc53
 
105179a
a8dcc53
6404fd8
 
 
 
 
 
 
 
 
 
 
a8dcc53
6404fd8
a8dcc53
 
 
 
 
 
 
 
 
6404fd8
 
a8dcc53
 
 
 
6404fd8
 
 
5f5f8de
6404fd8
38dd749
6404fd8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr
from typing import List, Dict
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.utils import embedding_functions
import numpy as np
from tqdm import tqdm
import os
from huggingface_hub import login
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Login to Hugging Face Hub if token is available
if os.getenv("HUGGINGFACE_API_TOKEN"):
    login(token=os.getenv("HUGGINGFACE_API_TOKEN"))

class EnhancedChatbot:
    def __init__(self):
        # Initialize ChromaDB
        self.chroma_client = chromadb.Client()
        
        # Initialize embedding model using sentence-transformers
        self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
            model_name="all-MiniLM-L6-v2"
        )
        
        # Create collection with cosine similarity
        self.collection = self.chroma_client.create_collection(
            name="text_collection",
            embedding_function=self.embedding_function,
            metadata={"hnsw:space": "cosine"}
        )

        # Initialize the LLM with 8-bit quantization for efficiency
        model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            load_in_8bit=True,
            device_map="auto",
            torch_dtype=torch.float16
        )
        
        pipe = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.95,
            repetition_penalty=1.15,
            do_sample=True
        )
        
        self.llm = HuggingFacePipeline(pipeline=pipe)
        
        # Enhanced prompt templates with specific use cases
        self.templates = {
            "default": """
            You are a knowledgeable assistant providing accurate information based on the given context.
            
            GUIDELINES:
            1. Use ONLY the provided context
            2. If information is not in context, say "I don't have enough information"
            3. Be concise and clear
            4. Use markdown formatting for better readability
            5. If quoting, use proper citation format
            
            Context: {context}
            Chat History: {chat_history}
            Question: {question}
            
            Response:""",
            
            "summary": """
            Create a comprehensive summary of the provided context.
            
            Context: {context}
            
            REQUIREMENTS:
            1. Structure the summary with clear headings
            2. Use bullet points for key information
            3. Highlight important concepts
            4. Maintain factual accuracy
            
            Summary:""",
            
            "technical": """
            Provide a detailed technical analysis of the context.
            
            Context: {context}
            Question: {question}
            
            GUIDELINES:
            1. Focus on technical specifications
            2. Explain complex concepts clearly
            3. Use appropriate technical terminology
            4. Include relevant examples from context
            5. Structure the response logically
            
            Technical Analysis:""",
            
            "comparative": """
            Compare and analyze different aspects from the context.
            
            Context: {context}
            Question: {question}
            
            APPROACH:
            1. Identify key points for comparison
            2. Analyze similarities and differences
            3. Present balanced viewpoints
            4. Use tables or lists for clarity
            
            Comparison:"""
        }
        
        self.chat_history = []
        self.loaded = False

    def load_data(self, file_path: str, chunk_size: int = 512, overlap: int = 50):
        """Load and index data with progress bar"""
        if self.loaded:
            return True
        
        try:
            # Read the text file
            with open(file_path, 'r', encoding='utf-8') as f:
                content = f.read()
            
            # Create chunks with overlap
            chunks = []
            for i in range(0, len(content), chunk_size - overlap):
                chunk = content[i:i + chunk_size]
                chunks.append(chunk)
            
            # Add documents to collection with progress bar
            for i, chunk in tqdm(enumerate(chunks), desc="Loading chunks", total=len(chunks)):
                self.collection.add(
                    documents=[chunk],
                    ids=[f"chunk_{i}"],
                    metadatas=[{"source": file_path, "chunk_id": i}]
                )
            
            self.loaded = True
            return True
            
        except Exception as e:
            print(f"Error loading data: {str(e)}")
            return False

    def _search_documents(self, query: str, n_results: int = 5) -> List[Dict]:
        """Search for relevant documents"""
        try:
            results = self.collection.query(
                query_texts=[query],
                n_results=n_results,
                include=["documents", "metadatas", "distances"]
            )
            
            return [
                {
                    "content": doc,
                    "metadata": meta,
                    "similarity": 1 - dist  # Convert distance to similarity
                }
                for doc, meta, dist in zip(
                    results['documents'][0],
                    results['metadatas'][0],
                    results['distances'][0]
                )
            ]
        except Exception as e:
            print(f"Search error: {str(e)}")
            return []

    def _select_template(self, query: str) -> str:
        """Select appropriate template based on query content"""
        query_lower = query.lower()
        
        if any(word in query_lower for word in ["summarize", "summary", "overview"]):
            return "summary"
        elif any(word in query_lower for word in ["technical", "explain how", "how does"]):
            return "technical"
        elif any(word in query_lower for word in ["compare", "difference", "versus", "vs"]):
            return "comparative"
        return "default"

    def chat(self, query: str, history) -> str:
        """Process query and generate response"""
        try:
            if not self.loaded:
                if not self.load_data('a2023-45.txt'):
                    return "Error: Failed to load document data."
            
            # Search for relevant content
            search_results = self._search_documents(query)
            
            if not search_results:
                return "I apologize, but I couldn't find relevant information in the database."
            
            # Prepare context with similarity scores
            context_parts = []
            for result in search_results:
                context_parts.append(
                    f"[Similarity: {result['similarity']:.2f}]\n{result['content']}"
                )
            context = "\n\n".join(context_parts)
            
            # Select and use appropriate template
            template_type = self._select_template(query)
            prompt = ChatPromptTemplate.from_template(self.templates[template_type])
            
            # Generate response
            chain = prompt | self.llm
            response = chain.invoke({
                "context": context,
                "chat_history": "\n".join([f"{h[0]}: {h[1]}" for h in self.chat_history[-3:]]),
                "question": query
            })
            
            # Update chat history
            self.chat_history.append(("User", query))
            self.chat_history.append(("Assistant", response))
            
            return response
            
        except Exception as e:
            return f"Error processing query: {str(e)}"

# Initialize chatbot
chatbot = EnhancedChatbot()

# Create Gradio interface
demo = gr.Interface(
    fn=chatbot.chat,
    inputs=[
        gr.Textbox(
            label="Your Question",
            placeholder="Ask anything about the document...",
            lines=2
        ),
        gr.State([])  # For chat history
    ],
    outputs=gr.Textbox(label="Answer", lines=10),
    title="πŸ€– Enhanced Document Q&A System",
    description="""
    ### Advanced Document Question-Answering System
    
    **Available Query Types:**
    - πŸ“ **General Questions**: Just ask normally
    - πŸ“Š **Summaries**: Include words like "summarize" or "overview"
    - πŸ”§ **Technical Details**: Use words like "technical" or "explain how"
    - πŸ”„ **Comparisons**: Ask to "compare" or use "versus"
    
    *The system will automatically select the best response format based on your question.*
    """,
    examples=[
        ["Can you summarize the main points of the document?"],
        ["What are the technical details about the implementation?"],
        ["Compare the different approaches mentioned in the text."],
        ["What are the key concepts discussed?"]
    ],
    theme=gr.themes.Soft()
)

# Launch the interface
if __name__ == "__main__":
    demo.launch()