File size: 14,969 Bytes
b9bb7e7 1f5a7d5 b9bb7e7 c64d65e b9bb7e7 c64d65e b9bb7e7 d45ee38 2a83935 073c835 32e5738 073c835 ee3000a 1113ea0 33254a5 32e5738 4c32e5c 32e5738 4c32e5c 1d31b56 4c32e5c 32e5738 4c32e5c ee3000a 4c32e5c 1d31b56 4c32e5c d2e8e08 d45ee38 44f0f59 4d023c6 bdc42f3 8cea364 bdc42f3 8cea364 c64d65e bdc42f3 c64d65e 8cea364 c64d65e 4d023c6 c64d65e 4d023c6 c64d65e b7e0851 c64d65e 8cea364 c64d65e 8cea364 2e01859 fb9a319 8f07cc0 8cea364 fb9a319 402a6b4 8cea364 fb9a319 2b9fe40 29bf3db fb9a319 8cea364 2ed5c8a fb9a319 c64d65e 8cea364 c64d65e fb9a319 c64d65e 1317ce0 c64d65e fb9a319 c64d65e 8cea364 c64d65e fb9a319 2ed5c8a c64d65e fb9a319 2ed5c8a 2e01859 2ed5c8a 4b1fab8 8cea364 2e01859 fb9a319 8cea364 2ed5c8a 77cb298 5082164 77cb298 5082164 8cea364 bdc42f3 f04f4de 036be0e 77cb298 7f2eefc 036be0e bdc42f3 036be0e 2ed5c8a fb9a319 8cea364 036be0e 2dc9d89 e3d8df5 0da6aa3 b7e0851 b8bc3c1 2b40ee8 f931503 58d103a 3aa0579 58d103a f931503 b8bc3c1 b770e0b f931503 b8bc3c1 58d103a b770e0b 15609a8 5465355 4d023c6 fb9a319 4d023c6 930e9c0 8989755 fb9a319 d51037f fb9a319 2b9fe40 fb9a319 d51037f 930e9c0 30f9af0 33254a5 2a83935 63ba8d6 107a4fd 33254a5 fd61954 c411529 38a46cb 82f130e b770e0b 8cea364 fb9a319 8cea364 2e01859 8cea364 b7e0851 2ed5c8a 036be0e 637cd0f 036be0e b7e0851 036be0e bf9168a 8cea364 75ca28f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import gradio as gr
import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from langchain.memory import ConversationBufferWindowMemory
from pathlib import Path
import chromadb
from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translation_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
languages_list = [("Gujarati", "gu_IN"), ('Hindi',"hi_IN") , ("Bengali","bn_IN"), ("Malayalam","ml_IN"),
("Marathi","mr_IN"), ("Tamil","ta_IN"), ("Telugu","te_IN")]
lang_global = ''
def intitalize_lang(language):
global lang_global
lang_global = language
print("intitalize_lang"+lang_global)
def english_to_indian(sentence):
#print ("english_to_indian"+lang_global)
translated_sentence = ''
translation_tokenizer.src_lang = "en_xx"
chunks = [sentence[i:i+500] for i in range(0, len(sentence), 500)]
for chunk in chunks:
encoded_hi = translation_tokenizer(chunk, return_tensors="pt")
generated_tokens = translation_model.generate(**encoded_hi,
forced_bos_token_id=translation_tokenizer.lang_code_to_id[lang_global] )
x = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
translated_sentence = translated_sentence + x[0]
return translated_sentence
def indian_to_english(sentence):
translated_sentence = ''
translation_tokenizer.src_lang = lang_global
chunks = [sentence[i:i+500] for i in range(0, len(sentence), 500)]
for chunk in chunks:
encoded_hi = translation_tokenizer(chunk, return_tensors="pt")
generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"] )
x = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
translated_sentence = translated_sentence + x[0]
return translated_sentence
llm_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer_name = "thenlper/gte-small"
# default_persist_directory = './chroma_HF/'
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
"google/gemma-7b-it","google/gemma-2b-it", \
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
"google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
AutoTokenizer.from_pretrained(tokenizer_name),
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
strip_whitespace=True)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
# persist_directory=default_persist_directory
)
return vectordb
# Load vector database
def load_db():
embedding = HuggingFaceEmbeddings()
vectordb = Chroma(
# persist_directory=default_persist_directory,
embedding_function=embedding)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
# HuggingFaceHub uses HF inference endpoints
progress(0.5, desc="Initializing HF Hub...")
# Use of trust_remote_code as model_kwargs
# Warning: langchain issue
# URL: https://github.com/langchain-ai/langchain/issues/6080
llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature,
"max_new_tokens": max_tokens,
"top_k": top_k,
"load_in_8bit": True})
progress(0.75, desc="Defining buffer memory...")
#memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
memory = ConversationBufferWindowMemory(memory_key = 'chat_history', k=3,output_key='answer',return_messages=True)
retriever=vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
memory=memory,return_source_documents=True,verbose=False)
progress(0.9, desc="Done!")
return qa_chain
# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
# Create list of documents (when valid)
list_file_path = [x.name for x in list_file_obj if x is not None]
# Create collection_name for vector database
progress(0.1, desc="Creating collection name...")
collection_name = Path(list_file_path[0]).stem
# Fix potential issues from naming convention
## Remove space
collection_name = collection_name.replace(" ","-")
## Limit lenght to 50 characters
collection_name = collection_name[:50]
## Enforce start and end as alphanumeric character
if not collection_name[0].isalnum():
collection_name[0] = 'A'
if not collection_name[-1].isalnum():
collection_name[-1] = 'Z'
# print('list_file_path: ', list_file_path)
print('Collection name: ', collection_name)
progress(0.25, desc="Loading document...")
# Load document and create splits
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
# Create or load vector database
progress(0.5, desc="Generating vector database...")
# global vector_db
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Complete!"
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
# print("llm_option",llm_option)
llm_name = llm_model
print("llm_name: ",llm_name)
qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
#print("formatted_chat_history",formatted_chat_history)
# Generate response using QA chain
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# print ('chat response: ', response_answer)
# print('DB source', response_sources)
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
# print(file_path)
# initialize_database(file_path, progress)
return list_file_path
def demo():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
pdf_directory = '/home/user/app/pdfs'
def process_pdfs():
# List all PDF files in the directory
pdf_files = [os.path.join(pdf_directory, file) for file in os.listdir(pdf_directory) if file.endswith(".pdf")]
return pdf_files
# Create a dictionary with the necessary information
pdf_dict = {"value": process_pdfs, "height": 100, "file_count": "multiple",
"visible": False, "file_types": ["pdf"], "interactive": True,
"label": "Uploaded PDF documents"}
# Create a gr.Files component with the dictionary
#document_files = gr.Files(**pdf_dict)
with gr.Row():
# document = gr.Files(value = process_pdfs, height=100, file_count="multiple",visible=True,
# file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
document = gr.Files(**pdf_dict)
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database",visible=False)
with gr.Accordion("Advanced options - Document text splitter", open=False, visible=False):
with gr.Row():
slider_chunk_size = gr.Slider(value=512, label="Chunk size", info="Chunk size", interactive=False, visible=False)
with gr.Row():
slider_chunk_overlap = gr.Slider(value=128, label="Chunk overlap", info="Chunk overlap", interactive=False, visible=False)
with gr.Accordion("Advanced options - LLM model", open=False, visible=False):
with gr.Row():
slider_temperature = gr.Slider(value = 0.1,visible=False)
with gr.Row():
slider_maxtokens = gr.Slider(value = 4000, visible=False)
with gr.Row():
slider_topk = gr.Slider(value = 3, visible=False)
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None", visible=True)
llm_progress = gr.Textbox(value="None",label="QA chain initialization", visible=True)
with gr.Row():
db_btn = gr.Button("Generate vector database")
qachain_btn = gr.Button("Initialize model")
# with gr.Row():
# with gr.Row():
with gr.Row():
lang_btn = gr.Dropdown(languages_list, label="Languages", value = languages_list[1],
type="value", info="Choose your language",interactive = True)
lang_btn.change(intitalize_lang, inputs = lang_btn)
chatbot = gr.Chatbot(height=300, bubble_full_width = False, layout = 'panel')
chatbot.change(preprocess = english_to_indian, postprocess = indian_to_english)
with gr.Row():
msg = gr.Textbox(placeholder="Type message", container=True)
with gr.Accordion("References", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot])
# Preprocessing events
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
db_btn.click(initialize_database, \
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |