Spaces:
Sleeping
Sleeping
File size: 23,943 Bytes
643c6c8 8f12e15 86fa8c7 8f12e15 86fa8c7 8f12e15 193ef12 8f12e15 1bd00e6 8f12e15 4bbaf7b 8f12e15 193ef12 8f12e15 4bbaf7b 8f12e15 4bbaf7b 8f12e15 4bbaf7b 1bd00e6 8f12e15 e8fc579 1bd00e6 2949f94 643c6c8 4bbaf7b 1bd00e6 4bbaf7b 1bd00e6 4bbaf7b a213ac9 1bd00e6 4bbaf7b 1bd00e6 4bbaf7b 1bd00e6 643c6c8 1bd00e6 643c6c8 e892479 e8fc579 1bd00e6 e892479 86fa8c7 e892479 86fa8c7 e892479 26a8e4a e892479 08b8ea5 e892479 643c6c8 86fa8c7 e892479 86fa8c7 e892479 08b8ea5 e892479 08b8ea5 e892479 a213ac9 38619e7 a213ac9 b35faa8 1bd00e6 b35faa8 1bd00e6 b35faa8 1bd00e6 b35faa8 a213ac9 b35faa8 a213ac9 cf3cfd9 a213ac9 cf3cfd9 a213ac9 b35faa8 cf3cfd9 b35faa8 cf3cfd9 1bd00e6 b35faa8 a213ac9 cf3cfd9 b35faa8 a213ac9 3f1f433 a213ac9 cf3cfd9 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 cf3cfd9 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 cf3cfd9 a213ac9 fc8f0bd 4bbaf7b fc8f0bd 306ddaa fc8f0bd 306ddaa 45ba8c9 306ddaa cf3cfd9 b35faa8 816b291 306ddaa fc8f0bd 45ba8c9 a213ac9 fc8f0bd a213ac9 fc8f0bd a213ac9 45ba8c9 a213ac9 cf3cfd9 4bbaf7b cf3cfd9 4bbaf7b cf3cfd9 1bd00e6 cf3cfd9 a213ac9 e8fc579 a213ac9 b35faa8 a213ac9 e8fc579 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 b35faa8 f0d37cf b35faa8 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 b35faa8 a213ac9 3f1f433 a213ac9 e8fc579 0e5b201 e8fc579 0e5b201 e8fc579 306ddaa 8f12e15 cf3cfd9 34666ca a213ac9 816b291 a213ac9 193ef12 e8fc579 193ef12 a213ac9 643c6c8 bed31fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics import roc_auc_score, precision_score, recall_score
from pandas.tseries.offsets import BDay
import streamlit as st
from datetime import datetime
import pytz
import holidays
from getDailyData import get_daily
st.set_page_config(
page_title="Gameday $SPX",
page_icon="๐ฎ"
)
# Function to convert UTC to PST
def convert_to_pst(utc_time):
utc_timezone = pytz.timezone('UTC')
pst_timezone = pytz.timezone('America/Los_Angeles')
utc_time = utc_timezone.localize(utc_time)
pst_time = utc_time.astimezone(pst_timezone)
return pst_time
# Get the current UTC time
utc_now = datetime.utcnow()
# Convert UTC to PST
pst_now = convert_to_pst(utc_now)
# Function to check if a date is a business day (Monday to Friday)
def is_business_day(date):
return date.weekday() < 5 # Monday = 0, Friday = 4
# Function to get the list of holidays in the US for the current year
def get_us_holidays():
return holidays.US(years=datetime.now().year)
# Function to convert the time string to a datetime object
def convert_to_datetime(time_str, pst_now):
time_obj = datetime.strptime(time_str, "%H:%M")
# Combine the time with the current date to get the full datetime in PST
return datetime.combine(pst_now.date(), time_obj.time())
# Function to determine the emoji for each time
def get_time(_times, _pst_now):
pst_now_time = pst_now.time()
us_holidays = get_us_holidays()
idxs = []
for t in _times:
time_obj = convert_to_datetime(t, _pst_now)
# Check if the time is less than or equal to the current time in PST
if time_obj.time() <= pst_now_time:
idxs.append(True)
else:
# Check if it's a business day or a holiday
if is_business_day(time_obj) or time_obj.date() in us_holidays:
idxs.append(False)
else:
idxs.append(True)
return idxs
# Example usage:
times_list = ['06:30', '07:00', '07:30', '08:00', '08:30', '09:00', '09:30', '10:00', '10:30', '11:00', '11:30', '12:00', '12:30']
idxs = get_time(times_list, pst_now)
def get_last_idx(arr):
try:
return len(arr) - 1 - arr[::-1].index(True)
except ValueError:
return 0
idx_use = get_last_idx(idxs)
st.title('๐ฎ Gameday Model for $SPX')
st.markdown('**PLEASE NOTE:** Model should be run at or after market open. Documentation on the model and its features [can be found here.](https://huggingface.co/spaces/boomsss/gamedayspx/blob/main/README.md)')
if "mode" not in st.session_state:
st.session_state.mode = "Auto"
st.session_state.option = times_list[idx_use]
with st.form("choose_model"):
t1, t2 = st.columns(2)
with t1:
mode = st.radio('Choose mode', options=['Auto','Manual'], horizontal=True, label_visibility='collapsed')
change_mode = st.form_submit_button('๐๐ฝ Confirm Mode',use_container_width=True)
with t2:
submitted = st.form_submit_button('๐๐ฝโโ๏ธ Run',use_container_width=True)
cleared = st.form_submit_button('๐งน Clear',use_container_width=True)
option = st.select_slider(
f"""Change mode to Manual, and select time ๐๐ฝ Run.""",
times_list,
# format_func=lambda x: f"{emojis_list[times_list.index(x)]} {x}",
disabled = mode == 'Auto'
)
if mode == 'Auto':
option = times_list[idx_use]
else:
option = option
if change_mode:
st.info(f"Changed to {mode}.{' Model will run for {}.'.format(option) if mode == 'Auto' else ''}")
if cleared:
st.cache_data.clear()
if option == '':
st.info('No model selected.')
if submitted:
my_bar = st.progress(0)
fname=f'performance_for_{option}_model.csv'
if option == '06:30':
from model_day_v2 import *
fname='performance_for_open_model.csv'
my_bar.progress(0.33, 'Loading data...')
data, df_final, final_row = get_daily()
# st.success("โ
Historical data")
my_bar.progress(0.66, "Training models...")
def train_models():
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 200, 1)
return res1, xgbr, seq2
res1, xgbr, seq2 = train_models()
# st.success("โ
Models trained")
my_bar.progress(0.99, "Getting new prediction...")
my_bar.empty()
# Get last row
new_pred = data.loc[final_row, model_cols]
new_pred = pd.DataFrame(new_pred).T
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
curr_date = final_row + BDay(1)
curr_date = curr_date.strftime('%Y-%m-%d')
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
new_pred['VIXOpen'] = new_pred['VIXOpen'].astype(bool)
new_pred['VVIXOpen'] = new_pred['VVIXOpen'].astype(bool)
# new_pred['OHLC4_Current_Trend'] = new_pred['OHLC4_Current_Trend'].astype(bool)
# new_pred['OHLC4_Trend'] = new_pred['OHLC4_Trend'].astype(bool)
new_pred['OpenL1'] = new_pred['OpenL1'].astype(float)
new_pred['OpenL2'] = new_pred['OpenL2'].astype(float)
new_pred['OpenH1'] = new_pred['OpenH1'].astype(float)
new_pred['OpenH2'] = new_pred['OpenH2'].astype(float)
new_pred['L1TouchPct'] = new_pred['L1TouchPct'].astype(float)
new_pred['L2TouchPct'] = new_pred['L2TouchPct'].astype(float)
new_pred['H1TouchPct'] = new_pred['H1TouchPct'].astype(float)
new_pred['H2TouchPct'] = new_pred['H2TouchPct'].astype(float)
new_pred['L1BreakPct'] = new_pred['L1BreakPct'].astype(float)
new_pred['L2BreakPct'] = new_pred['L2BreakPct'].astype(float)
new_pred['H1BreakPct'] = new_pred['H1BreakPct'].astype(float)
new_pred['H2BreakPct'] = new_pred['H2BreakPct'].astype(float)
new_pred['H1BreakTouchPct'] = new_pred['H1BreakTouchPct'].astype(float)
new_pred['H2BreakTouchPct'] = new_pred['H2BreakTouchPct'].astype(float)
new_pred['L1BreakTouchPct'] = new_pred['L1BreakTouchPct'].astype(float)
new_pred['L2BreakTouchPct'] = new_pred['L2BreakTouchPct'].astype(float)
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
else:
from model_intra_v2 import *
idx = times_list.index(option)
my_bar.progress(0.33, 'Loading data...')
data, df_final, final_row = get_daily(mode='intra', periods_30m=idx)
# st.success("โ
Historical data")
my_bar.progress(0.66, "Training models...")
def train_models():
res1, xgbr = walk_forward_validation(df_final.dropna(), 'Target_clf', 1)
return res1, xgbr
res1, xgbr = train_models()
# st.success("โ
Models trained")
my_bar.progress(0.99, "Getting new prediction...")
my_bar.empty()
# Get last row
new_pred = data.loc[final_row, model_cols]
new_pred = pd.DataFrame(new_pred).T
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
curr_date = final_row + BDay(1)
curr_date = curr_date.strftime('%Y-%m-%d')
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
new_pred['CurrentVIXTrend'] = new_pred['CurrentVIXTrend'].astype(bool)
new_pred['SPX30IntraPerf'] = new_pred['SPX30IntraPerf'].astype(float)
new_pred['VIX30IntraPerf'] = new_pred['VIX30IntraPerf'].astype(float)
new_pred['VVIX30IntraPerf'] = new_pred['VVIX30IntraPerf'].astype(float)
# new_pred['OpenL1'] = new_pred['OpenL1'].astype(float)
# new_pred['OpenL2'] = new_pred['OpenL2'].astype(float)
# new_pred['OpenH1'] = new_pred['OpenH1'].astype(float)
# new_pred['OpenH2'] = new_pred['OpenH2'].astype(float)
new_pred['L1TouchPct'] = new_pred['L1TouchPct'].astype(float)
new_pred['L2TouchPct'] = new_pred['L2TouchPct'].astype(float)
new_pred['H1TouchPct'] = new_pred['H1TouchPct'].astype(float)
new_pred['H2TouchPct'] = new_pred['H2TouchPct'].astype(float)
new_pred['L1BreakPct'] = new_pred['L1BreakPct'].astype(float)
new_pred['L2BreakPct'] = new_pred['L2BreakPct'].astype(float)
new_pred['H1BreakPct'] = new_pred['H1BreakPct'].astype(float)
new_pred['H2BreakPct'] = new_pred['H2BreakPct'].astype(float)
new_pred['H1BreakTouchPct'] = new_pred['H1BreakTouchPct'].astype(float)
new_pred['H2BreakTouchPct'] = new_pred['H2BreakTouchPct'].astype(float)
new_pred['L1BreakTouchPct'] = new_pred['L1BreakTouchPct'].astype(float)
new_pred['L2BreakTouchPct'] = new_pred['L2BreakTouchPct'].astype(float)
new_pred['H1BreakH2TouchPct'] = new_pred['H1BreakH2TouchPct'].astype(float)
new_pred['L1BreakL2TouchPct'] = new_pred['L1BreakL2TouchPct'].astype(float)
new_pred['GreenProbas'] = new_pred['GreenProbas'].astype(float)
new_pred['OHLC4_Current_Trend'] = new_pred['OHLC4_Current_Trend'].astype(bool)
new_pred['OHLC4_Trend'] = new_pred['OHLC4_Trend'].astype(bool)
new_pred['H1TouchGreenPct'] = new_pred['H1TouchGreenPct'].astype(float)
new_pred['L1TouchRedPct'] = new_pred['L1TouchRedPct'].astype(float)
seq_proba = seq_predict_proba(new_pred, xgbr)
st.info(f'as of {option} on {curr_date} ๐๐ฝ', icon="๐ฎ")
# st.subheader('New Prediction')
# int_labels = ['(0, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, .1]']
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
_q = 7
lo_thres = 0.4 # res1.loc[middle_quantiles, 'Predicted'].min()
hi_thres = 0.6 # res1.loc[middle_quantiles, 'Predicted'].max()
data['ClosePct'] = (data['Close'] / data['PrevClose']) - 1
data['ClosePct'] = data['ClosePct'].shift(-1)
res1 = res1.merge(data['ClosePct'], left_index=True,right_index=True)
# df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum],'ClosePct':[np.mean]})
df_probas = res1.groupby(pd.cut(res1['Predicted'], _q)).agg({
'True':[np.mean,len,np.sum],
'ClosePct':[np.mean,
lambda x: np.mean([r for r in x if r < 0]),
lambda x: np.mean([r for r in x if r > 0])]})
df_probas.columns = ['PctGreen','NumObs','NumGreen','AvgPerf','AvgDown','AvgUp']
df_probas['AvgPerf'] = df_probas['AvgPerf'].apply(lambda x: f'{x:.2%}')
df_probas['AvgDown'] = df_probas['AvgDown'].apply(lambda x: f'{x:.2%}')
df_probas['AvgUp'] = df_probas['AvgUp'].apply(lambda x: f'{x:.2%}')
green_proba = seq_proba[0]
red_proba = 1 - green_proba
do_not_play = (seq_proba[0] > lo_thres) and (seq_proba[0] <= hi_thres)
stdev = 0.01
score = None
calib_score = None
num_obs = None
cond = None
historical_proba = None
red_hist_proba = None
mid = None
lo = None
hi = None
text_cond = None
operator = None
intv = None
for q in df_probas.index:
if q.left <= green_proba <= q.right:
historical_proba = df_probas.loc[q, 'PctGreen']
red_hist_proba = 1 - historical_proba
num_obs = df_probas.loc[q, 'NumObs']
mid = df_probas.loc[q, 'AvgPerf']
lo = df_probas.loc[q, 'AvgDown']
hi = df_probas.loc[q, 'AvgUp']
intv = f'({q.left:.03f}, {q.right:.03f}])'
qs = [f'({q.left:.2f}, {q.right:.2f}]' for q in df_probas.index]
df_probas.index = qs
if do_not_play:
text_cond = '๐จ'
operator = ''
score = seq_proba[0]
calib_score = historical_proba
cond = (res1['Predicted'] > lo_thres) & (res1['Predicted'] <= hi_thres)
# num_obs = len(res1.loc[cond])
# historical_proba = res1.loc[cond, 'True'].mean()
elif green_proba > red_proba:
# If the day is predicted to be green, say so
text_cond = '๐ฉ'
operator = '>='
score = green_proba
calib_score = historical_proba
# How many with this score?
cond = (res1['Predicted'] >= green_proba)
# num_obs = len(res1.loc[cond])
# How often green?
# historical_proba = res1.loc[cond, 'True'].mean()
# print(cond)
elif green_proba <= red_proba:
# If the day is predicted to be green, say so
text_cond = '๐ฅ'
operator = '<='
score = red_proba
calib_score = red_hist_proba
# How many with this score?
cond = (res1['Predicted'] <= seq_proba[0])
# num_obs = len(res1.loc[cond])
# How often green?
# historical_proba = 1 - res1.loc[cond, 'True'].mean()
# print(cond)
score_fmt = f'{score:.1%}'
calib_score_fmt = f'{calib_score:.1%}'
prev_close = data.loc[final_row,'Close']
curr_close = data['Close'].iloc[-1]
curr_open = data['Open'].iloc[-1]
curr_close30 = curr_open if option == '06:30' else data['CurrentClose30'].iloc[-2]
# confidence, success, nn = st.columns(3)
# confidence.metric('Confidence',value=f'{text_cond} {score:.1%}')
# success.metric('SuccessRate',value=f'{historical_proba:.1%}')
# nn.metric(f'N{operator}{"" if do_not_play else score_fmt}',value=num_obs)
top_of_fold = pd.DataFrame(
index=['Results'],
data = {
'Confidence':[f'{text_cond} {score:.1%}'],
# 'Calib. Proba':[f'{historical_proba:.1%}'],
'Calib. Proba':[f'{text_cond} {calib_score_fmt}'],
f'{intv}':[f'{num_obs}'],
'Prev / Curr':[f'{prev_close:.2f} / {curr_close:.2f}']
})
prices = pd.DataFrame(index=[
'PrevClose',
'CurrClose'
], data = [
f"{prev_close:.2f}",
f"{curr_close:.2f}"
])
prices.columns = ['']
targets = pd.DataFrame(
index=[
f'Close @ {option} ({(curr_close30 / prev_close) - 1:.2%})',
f'Low ({lo})',
f'Mid ({mid})',
f'High ({hi})'
],
data=[
[f"{curr_close30:.0f}"],
[f"{(1+float(lo.strip('%'))/100) * prev_close:.0f}"],
[f"{(1+float(mid.strip('%'))/100) * prev_close:.0f}"],
[f"{(1+float(hi.strip('%'))/100) * prev_close:.0f}"]
],
columns=['Targets'])
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
roc_auc_score_calib = roc_auc_score(res1.dropna(subset='CalibPredicted')['True'].astype(int), res1.dropna(subset='CalibPredicted')['CalibPredicted'].values)
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
len_all = len(res1)
res2_filtered = res1.loc[(res1['Predicted'] > hi_thres) | (res1['Predicted'] <= lo_thres)]
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
roc_auc_score_hi_calib = roc_auc_score(res2_filtered.dropna(subset='CalibPredicted')['True'].astype(int), res2_filtered.dropna(subset='CalibPredicted')['CalibPredicted'].values)
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
len_hi = len(res2_filtered)
df_performance = pd.DataFrame(
index=[
'N',
'ROC AUC',
'Calib. AUC',
'Precision',
'Recall'
],
columns = [
'All',
'High Confidence'
],
data = [
[len_all, len_hi],
[roc_auc_score_all, roc_auc_score_hi],
[roc_auc_score_calib, roc_auc_score_hi_calib],
[precision_score_all, precision_score_hi],
[recall_score_all, recall_score_hi]
]
).round(2)
def get_acc(t, p):
if t == False and p <= lo_thres:
return 'โ
' # ✅</p>
elif t == True and p > hi_thres:
return 'โ
' #
elif t == False and p > hi_thres:
return 'โ' # ❌</p>
elif t == True and p <= lo_thres:
return 'โ'
else:
return '๐จ' # ⬜</p>
def get_acc_html(t, p):
if t == False and p <= lo_thres:
return '✅'
elif t == True and p > hi_thres:
return '✅'
elif t == False and p > hi_thres:
return '❌'
elif t == True and p <= lo_thres:
return '❌'
else:
return '⬜'
def get_acc_text(t, p):
if t == False and p <= lo_thres:
return 'Correct'
elif t == True and p > hi_thres:
return 'Correct'
elif t == False and p > hi_thres:
return 'Incorrect'
elif t == True and p <= lo_thres:
return 'Incorrect'
else:
return 'No Action'
perf_daily = res1.copy()
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv()
csv = convert_df(perf_daily)
check = data.tail(1)
df_levels = pd.DataFrame(
index=['H2','H1','L1','L2'],
columns=['Level','BreakPct(100)','TouchPct(100)','BreakGivenTouch(100)'],
data=[
[f"{data['H2'].iloc[-1]:.2f}",f"{data['H2BreakPct'].iloc[-2]:.1%}",f"{data['H2TouchPct'].iloc[-2]:.1%}",f"{data['H2BreakTouchPct'].iloc[-2]:.1%}"],
[f"{data['H1'].iloc[-1]:.2f}",f"{data['H1BreakPct'].iloc[-2]:.1%}",f"{data['H1TouchPct'].iloc[-2]:.1%}",f"{data['H1BreakTouchPct'].iloc[-2]:.1%}"],
[f"{data['L1'].iloc[-1]:.2f}",f"{data['L1BreakPct'].iloc[-2]:.1%}",f"{data['L1TouchPct'].iloc[-2]:.1%}",f"{data['L1BreakTouchPct'].iloc[-2]:.1%}"],
[f"{data['L2'].iloc[-1]:.2f}",f"{data['L2BreakPct'].iloc[-2]:.1%}",f"{data['L2TouchPct'].iloc[-2]:.1%}",f"{data['L2BreakTouchPct'].iloc[-2]:.1%}"]
]
)
# Cache all DFs
all_dfs = []
top1, top2 = st.columns(2)
# st.dataframe(top_of_fold.set_index('Confidence',drop=True), use_container_width=True)
with top1:
st.dataframe(top_of_fold.T, use_container_width=True)
with top2:
st.dataframe(targets, use_container_width=True)
tab1, tab2, tab3, tab4 = st.tabs(["๐ค Stats", "โจ New Data", "๐ Historical", "๐ Performance"])
with tab1:
# st.dataframe(prices.T.set_index('PrevClose', drop=True))
st.write(df_probas)
st.write(f'๐ JC Levels')
st.write(df_levels)
with tab2:
st.subheader('Latest Data for Pred')
st.write(new_pred)
with tab3:
st.subheader('Historical Data')
st.write(df_final)
with tab4:
st.subheader('Performance')
st.write(df_performance)
st.text('Performance last 10 days (download for all)')
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']].iloc[-10:])
# st.download_button(
# label="Download Historical Performance",
# data=csv,
# )
if submitted:
st.download_button(
label="Download Historical Performance",
data=csv,
file_name=fname,
)
st.caption('โ ๏ธ Downloading the CSV will reload the page. โ ๏ธ') |