Spaces:
Sleeping
Sleeping
File size: 4,825 Bytes
68ebbad b2639c4 1423812 5e47ce2 798ae3d cfa8b24 a6c4560 030c58e a6c4560 030c58e 48d2197 3dbcc1d da3ed73 68ebbad b0b6588 d766871 d7dd53f d6bb7f6 a6c4560 3c9434b 5426655 d6bb7f6 5426655 0c020f3 3c9434b d6bb7f6 a24e27f 48d2197 a1ed311 384bc42 e99de43 a6c4560 030c58e a6c4560 030c58e a6c4560 030c58e a6c4560 030c58e a6c4560 31d5f11 a6c4560 31d5f11 a6c4560 31d5f11 a6c4560 31d5f11 a6c4560 030c58e a6c4560 030c58e a6c4560 030c58e a6c4560 030c58e 5e47ce2 dc1e98e a8d155f dc1e98e 030c58e a8d155f 030c58e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import streamlit as st
from PIL import Image
from transformers import pipeline
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import parallel_coordinates
# Initialize session state for results, image names, and image sizes if not already present
if 'results' not in st.session_state:
st.session_state['results'] = []
if 'image_names' not in st.session_state:
st.session_state['image_names'] = []
if 'image_sizes' not in st.session_state:
st.session_state['image_sizes'] = []
# Disable PyplotGlobalUseWarning
st.set_option('deprecation.showPyplotGlobalUse', False)
# Create an image classification pipeline with scores
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
# Streamlit app
st.title("Emotion Recognition with vit-face-expression")
# Upload images
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
# Display thumbnail images alongside file names and sizes in the sidebar
selected_images = []
if uploaded_images:
# Reset the image names and sizes lists each time new images are uploaded
st.session_state['image_names'] = [img.name for img in uploaded_images]
st.session_state['image_sizes'] = [round(img.size / 1024.0, 1) for img in uploaded_images]
# Add a "Select All" checkbox in the sidebar
select_all = st.sidebar.checkbox("Select All", False)
for idx, img in enumerate(uploaded_images):
image = Image.open(img)
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
# Display thumbnail image and checkbox in sidebar
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)
if selected:
selected_images.append(image)
if st.button("Predict Emotions") and selected_images:
# Predict emotion for each selected image using the pipeline
st.session_state['results'] = [pipe(image) for image in selected_images]
# Generate DataFrame from results
if st.button("Generate DataFrame"):
# Access the results, image names, and sizes from the session state
results = st.session_state['results']
image_names = st.session_state['image_names']
image_sizes = st.session_state['image_sizes']
if results:
# Initialize an empty list to store all the data
data = []
# Iterate over the results and populate the list with dictionaries
for i, result_set in enumerate(results):
# Initialize a dictionary for the current set with zeros
current_data = {
'Happy': 0,
'Surprise': 0,
'Neutral': 0,
'Sad': 0,
'Disgust': 0,
'Angry': 0,
'Fear': 0,
# Add other emotions if necessary
'Image Name': image_names[i],
#'Image Size (KB)': image_sizes[i]
'Image Size (KB)': f"{image_sizes[i]:.1f}" # Format the size to one decimal place
}
for result in result_set:
# Capitalize the label and update the score in the current set
emotion = result['label'].capitalize()
score = round(result['score'], 4) # Round the score to 4 decimal places
current_data[emotion] = score
# Append the current data to the data list
data.append(current_data)
# Convert the list of dictionaries into a pandas DataFrame
df_emotions = pd.DataFrame(data)
# Display the DataFrame
st.write(df_emotions)
# Plotting the heatmap for the first seven columns
plt.figure(figsize=(10, 10))
sns.heatmap(df_emotions.iloc[:, :7], annot=True, fmt=".1f", cmap='viridis')
plt.title('Heatmap of Emotion Scores')
plt.xlabel('Emotion Categories')
plt.ylabel('Data Points')
st.pyplot(plt)
# Optional: Save the DataFrame to a CSV file
df_emotions.to_csv('emotion_scores.csv', index=False)
st.success('DataFrame generated and saved as emotion_scores.csv')
with open('emotion_scores.csv', 'r') as f:
csv_file = f.read()
st.download_button(
label='Download Emotion Scores as CSV',
data=csv_file,
file_name='emotion_scores.csv',
mime='text/csv',
)
st.success('DataFrame generated and available for download.')
else:
st.error("No results to generate DataFrame. Please predict emotions first.")
|