File size: 6,428 Bytes
944593e
 
 
e020ff3
1c7a5e7
7a84307
eef276d
dff1e7c
eef276d
dff1e7c
 
944593e
d47491b
944593e
 
 
 
e020ff3
944593e
f2ed4e7
a756b7d
944593e
 
 
 
8d99061
e020ff3
 
 
8d99061
 
a756b7d
 
8d99061
 
fa8f268
8d99061
944593e
 
f080dd9
944593e
 
 
 
f080dd9
249a008
f080dd9
 
 
 
08f6ce3
1c7a5e7
f2ed4e7
1c7a5e7
573b41b
08f6ce3
eef276d
a756b7d
f080dd9
e020ff3
f080dd9
 
cfb9d35
f080dd9
a756b7d
573b41b
a756b7d
573b41b
a756b7d
573b41b
 
a756b7d
 
 
 
e020ff3
a756b7d
8d99061
 
f080dd9
e020ff3
 
cfb9d35
f080dd9
8d99061
f080dd9
d47491b
 
f080dd9
cfb9d35
8d99061
 
 
 
 
 
 
a756b7d
 
f080dd9
af6e981
 
 
 
 
 
 
 
 
 
 
 
 
 
e020ff3
f080dd9
cfb9d35
f080dd9
cfb9d35
a756b7d
 
 
af6e981
a756b7d
 
 
 
 
 
 
cfb9d35
 
 
e020ff3
cfb9d35
af6e981
cfb9d35
f080dd9
e020ff3
f080dd9
af6e981
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import pandas as pd
import os
import traceback
from dotenv import load_dotenv
from llama_index.readers.file.paged_csv.base import PagedCSVReader
from llama_index.core import Settings, VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.core.ingestion import IngestionPipeline
from langchain_community.vectorstores import FAISS as LangChainFAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.documents import Document  
import faiss
import tempfile
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Load environment variables
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")

# βœ… Check OpenAI API Key
if not os.getenv("OPENAI_API_KEY"):
    st.error("⚠️ OpenAI API Key is missing! Please check your .env file or environment variables.")

# βœ… Ensure OpenAI Embeddings match FAISS dimensions
embedding_function = OpenAIEmbeddings()
test_vector = embedding_function.embed_query("test")  
faiss_dimension = len(test_vector)  

# βœ… Update global settings for LlamaIndex
Settings.llm = OpenAI(model="gpt-4o")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=faiss_dimension)

# Streamlit app
st.title("Chat with CSV Files - LangChain vs LlamaIndex")

# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
if uploaded_file:
    try:
        # Read and preview CSV data using pandas
        data = pd.read_csv(uploaded_file)
        st.write("Preview of uploaded data:")
        st.dataframe(data)

        # Save the uploaded file to a temporary location
        with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as temp_file:
            temp_file_path = temp_file.name
            data.to_csv(temp_file.name, index=False, encoding="utf-8")
            temp_file.flush()

        # Tabs for LangChain and LlamaIndex
        tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])

        # βœ… LangChain Processing
        with tab1:
            st.subheader("LangChain Query")

            try:
                # βœ… Convert CSV rows into LangChain Document objects with chunking
                st.write("Processing CSV with a custom loader...")
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=90)
                documents = []

                for _, row in data.iterrows():
                    content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
                    chunks = text_splitter.split_text(content)
                    for chunk in chunks:
                        doc = Document(page_content=chunk)
                        documents.append(doc)

                # βœ… Create FAISS VectorStore
                st.write(f"βœ… Initializing FAISS with dimension: {faiss_dimension}")
                langchain_index = faiss.IndexFlatL2(faiss_dimension)

                docstore = InMemoryDocstore()
                index_to_docstore_id = {}

                langchain_vector_store = LangChainFAISS(
                    embedding_function=embedding_function,
                    index=langchain_index,
                    docstore=docstore,
                    index_to_docstore_id=index_to_docstore_id,
                )

                # βœ… Ensure documents are added correctly
                try:
                    langchain_vector_store.add_documents(documents)
                    st.write("βœ… Documents successfully added to FAISS VectorStore.")
                except Exception as e:
                    st.error(f"Error adding documents to FAISS: {e}")

                # βœ… Limit number of retrieved documents
                retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})

                # βœ… Create LangChain Query Execution Pipeline
                system_prompt = (
                    "You are an assistant for question-answering tasks. "
                    "Use the following pieces of retrieved context to answer "
                    "the question. Keep the answer concise.\n\n{context}"
                )

                prompt = ChatPromptTemplate.from_messages(
                    [("system", system_prompt), ("human", "{input}")]
                )

                question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
                langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)

                # βœ… Query Processing
                query = st.text_input("Ask a question about your data (LangChain):")

                if query:
                    try:
                        retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
                        retrieved_context = retrieved_context[:3000]  

                        # βœ… Ensure that we use the retrieved context
                        system_prompt = (
                            "You are an assistant for question-answering tasks. "
                            "Use the following pieces of retrieved context to answer "
                            "the question. Keep the answer concise.\n\n"
                            f"{retrieved_context}"
                        )

                        answer = langchain_rag_chain.invoke({"input": query})
                        st.write(f"**Answer:** {answer['answer']}")
                    except Exception as e:
                        error_message = traceback.format_exc()
                        st.error(f"Error processing query: {e}")
                        st.text(error_message)  

            except Exception as e:
                error_message = traceback.format_exc()
                st.error(f"Error processing with LangChain: {e}")
                st.text(error_message)  
    except Exception as e:
        error_message = traceback.format_exc()
        st.error(f"Error reading uploaded file: {e}")
        st.text(error_message)  #