File size: 10,437 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
9a5ce03
fb2aab1
 
dacc7c0
e3a3d3b
3631cca
334ba26
 
9a5ce03
494aa89
6858546
334ba26
494aa89
 
0e313c1
9a5ce03
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
9a5ce03
9e5813b
 
 
 
 
e3a3d3b
fb2aab1
4e61093
a7c229b
936af04
da85c67
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
9a5ce03
da85c67
4184e5e
 
d9bd34f
 
e3a3d3b
6858546
 
 
4184e5e
 
fb2aab1
e3a3d3b
6858546
936af04
f0734be
da85c67
274d1f4
 
 
6858546
 
e3a3d3b
274d1f4
 
da85c67
274d1f4
 
a7c229b
90f35d6
e3a3d3b
 
 
 
 
 
90f35d6
eba6e2a
274d1f4
864d91e
da85c67
9a5ce03
658d2e0
 
c1e956a
 
 
 
658d2e0
 
c1e956a
 
 
 
d9bd34f
 
c1e956a
 
 
 
d9bd34f
 
c1e956a
 
 
d9bd34f
 
c1e956a
 
 
f9158d1
37c8a73
c1e956a
6858546
4e61093
da85c67
3631cca
 
6c32a43
9a5ce03
3631cca
 
 
 
f9158d1
a7c229b
3631cca
a2919e9
 
 
 
3631cca
 
 
 
3f9d6c3
a7c229b
a2919e9
3631cca
6c32a43
a7c229b
3f9d6c3
e3a3d3b
494ecb7
 
 
 
3f9d6c3
 
9a5ce03
4c8161e
bdb69d5
a919084
 
a2919e9
a919084
 
c2adf9a
a919084
c2adf9a
 
 
 
fc18b37
c2adf9a
 
a919084
c2adf9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a919084
c2adf9a
 
 
 
a919084
c2adf9a
 
6c32a43
 
 
 
 
8588a66
27b66bb
 
 
6c32a43
27b66bb
 
 
 
 
 
 
 
 
 
 
bdb69d5
 
4c8161e
bdb69d5
c2adf9a
3631cca
27b66bb
 
 
6c32a43
a2919e9
 
c2adf9a
 
 
4c8161e
3f9d6c3
c2adf9a
3f9d6c3
4c8161e
6c32a43
c2adf9a
 
 
3631cca
c2adf9a
 
6858546
3631cca
27b66bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Helper Functions
def bag_of_words(s, words):
    """Convert user input to bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    """Generate chatbot response and maintain conversation history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment and map to emojis."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    """Detect emotions based on input."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    """Return relevant suggestions based on detected emotions."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
            ["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
        ],
        "anger": [
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
            ["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/MIc299Flibs"],
        ],
        "fear": [
            ["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
            ["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
        ],
        "sadness": [
            ["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
            ["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
        ],
        "surprise": [
            ["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
            ["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
            ["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
        ],
    }
    return suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])  # default suggestion

def get_health_professionals_and_map(location, query):
    """Search nearby healthcare professionals using Google Maps API."""
    try:
        if not location or not query:
            return [], ""  # Return empty list if inputs are missing

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append({
                    "Name": place['name'],
                    "Address": place.get('vicinity', 'No address provided')
                })
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return [], ""  # Return empty list if no professionals found
    except Exception as e:
        return [], ""  # Return empty list on exception

# Main Application Logic
def app_function(user_input, location, query, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html

# CSS Styling
custom_css = """
body {
    font-family: 'Roboto', sans-serif;
    background-color: #3c6487; /* Set the background color */
    color: white;
}

h1 {
    background: #ffffff;
    color: #000000;
    border-radius: 8px;
    padding: 10px;
    font-weight: bold;
    text-align: center;
    font-size: 2.5rem;
}

textarea, input {
    background: transparent;
    color: black;
    border: 2px solid orange;
    padding: 8px;
    font-size: 1rem;
    caret-color: black;
    outline: none;
    border-radius: 8px;
}

textarea:focus, input:focus {
    background: transparent;
    color: black;
    border: 2px solid orange;
    outline: none;
}

textarea:hover, input:hover {
    background: transparent;
    color: black;
    border: 2px solid orange;
}

.df-container {
    background: white;
    color: black;
    border: 2px solid orange;
    border-radius: 10px;
    padding: 10px;
    font-size: 14px;
    max-height: 400px;
    height: auto;
    overflow-y: auto;
}

#suggestions-title {
    text-align: center !important; /* Ensure the centering is applied */
    font-weight: bold !important; /* Ensure bold is applied */
    color: white !important; /* Ensure color is applied */
    font-size: 4.2rem !important; /* Ensure font size is applied */
    margin-bottom: 20px !important; /* Ensure margin is applied */
}

/* Style for the submit button */
.gr-button {
    background-color: #ae1c93;  /* Set the background color to #ae1c93 */
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
    transition: background-color 0.3s ease;
}

.gr-button:hover {
    background-color: #8f167b;
}

.gr-button:active {
    background-color: #7f156b;
}
"""

# Gradio Application
with gr.Blocks(css=custom_css) as app:
    gr.HTML("<h1>🌟 Well-Being Companion</h1>")
    with gr.Row():
        user_input = gr.Textbox(label="Please Enter Your Message Here")
        location = gr.Textbox(label="Please Enter Your Current Location Here")
        query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
        
    submit = gr.Button(value="Submit", variant="primary")

    chatbot = gr.Chatbot(label="Chat History")
    sentiment = gr.Textbox(label="Detected Sentiment")
    emotion = gr.Textbox(label="Detected Emotion")
    
    # Adding Suggestions Title with Styled Markdown (Centered and Bold)
    gr.Markdown("Suggestions", elem_id="suggestions-title")
    
    suggestions = gr.DataFrame(headers=["Title", "Link"])  # Table for suggestions
    professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])  # Changed to DataFrame
    map_html = gr.HTML(label="Interactive Map")

    submit.click(
        app_function,
        inputs=[user_input, location, query, chatbot],
        outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html],
    )

app.launch()