Spaces:
Sleeping
Sleeping
File size: 10,604 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be e624859 9a5ce03 4a3e857 dacc7c0 e3a3d3b 3631cca 334ba26 9a5ce03 494aa89 6858546 334ba26 494aa89 0e313c1 9a5ce03 4e61093 274d1f4 6858546 c69efb6 9a5ce03 9e5813b e3a3d3b fb2aab1 4e61093 4a3e857 936af04 4a3e857 4e61093 4184e5e 6858546 936af04 4525308 9a5ce03 4a3e857 4184e5e d9bd34f 4a3e857 4184e5e fb2aab1 e3a3d3b 6858546 936af04 f0734be 4a3e857 274d1f4 6858546 e3a3d3b 274d1f4 4a3e857 274d1f4 a7c229b 90f35d6 e3a3d3b 90f35d6 eba6e2a 274d1f4 864d91e 4a3e857 9a5ce03 658d2e0 4a3e857 37c8a73 902333f 4a3e857 902333f 4a3e857 902333f 6858546 4e61093 4a3e857 3631cca 4a3e857 3631cca f9158d1 a7c229b 3631cca 4a3e857 8af544f 3631cca 3f9d6c3 4a3e857 3631cca 4a3e857 a7c229b 3f9d6c3 4a3e857 494ecb7 3f9d6c3 4a3e857 9a5ce03 4c8161e bdb69d5 4a3e857 bdb69d5 4c8161e bdb69d5 c2adf9a 3631cca 27b66bb 4a3e857 6c32a43 a2919e9 c2adf9a 4c8161e 4a3e857 c2adf9a 3f9d6c3 4a3e857 c2adf9a 3631cca 4a3e857 6858546 3631cca 27b66bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Helper Functions
def bag_of_words(s, words):
"""Convert user input to bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
"""Generate chatbot response and maintain conversation history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment and map to emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
"""Detect emotions based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy π",
"anger": "Anger π ",
"sadness": "Sadness π’",
"fear": "Fear π¨",
"surprise": "Surprise π²",
"neutral": "Neutral π",
}
return emotion_map.get(emotion, "Unknown π€"), emotion
def generate_suggestions(emotion):
"""Return relevant suggestions based on detected emotions."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
],
"anger": [
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/MIc299Flibs"],
],
"fear": [
["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
],
"sadness": [
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
],
"surprise": [
["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
],
}
# Format the output to include HTML anchor tags
formatted_suggestions = [
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
]
return formatted_suggestions
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals using Google Maps API."""
try:
if not location or not query:
return [], "" # Return empty list if inputs are missing
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
# Use a list of values to append each professional
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], "" # Return empty list if no professionals found
except Exception as e:
return [], "" # Return empty list on exception
# Main Application Logic
def app_function(user_input, location, query, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
# CSS Styling
custom_css = """
body {
font-family: 'Roboto', sans-serif;
background-color: #3c6487; /* Set the background color */
color: white;
}
h1 {
background: #ffffff;
color: #000000;
border-radius: 8px;
padding: 10px;
font-weight: bold;
text-align: center;
font-size: 2.5rem;
}
textarea, input {
background: transparent;
color: black;
border: 2px solid orange;
padding: 8px;
font-size: 1rem;
caret-color: black;
outline: none;
border-radius: 8px;
}
textarea:focus, input:focus {
background: transparent;
color: black;
border: 2px solid orange;
outline: none;
}
textarea:hover, input:hover {
background: transparent;
color: black;
border: 2px solid orange;
}
.df-container {
background: white;
color: black;
border: 2px solid orange;
border-radius: 10px;
padding: 10px;
font-size: 14px;
max-height: 400px;
height: auto;
overflow-y: auto;
}
#suggestions-title {
text-align: center !important; /* Ensure the centering is applied */
font-weight: bold !important; /* Ensure bold is applied */
color: white !important; /* Ensure color is applied */
font-size: 4.2rem !important; /* Ensure font size is applied */
margin-bottom: 20px !important; /* Ensure margin is applied */
}
/* Style for the submit button */
.gr-button {
background-color: #ae1c93; /* Set the background color to #ae1c93 */
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #8f167b;
}
.gr-button:active {
background-color: #7f156b;
}
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here")
location = gr.Textbox(label="Please Enter Your Current Location Here")
query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
submit = gr.Button(value="Submit", variant="primary")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
# Adding Suggestions Title with Styled Markdown (Centered and Bold)
gr.Markdown("Suggestions", elem_id="suggestions-title")
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Table for suggestions
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Changed to DataFrame
map_html = gr.HTML(label="Interactive Map")
submit.click(
app_function,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html],
)
app.launch() |