File size: 24,205 Bytes
58cea02
 
 
 
 
 
d765ee8
58cea02
 
 
9c7e08b
58cea02
 
 
 
 
 
 
 
8e43993
 
d04558f
58cea02
 
 
e560f1d
58cea02
265f036
58cea02
1689df1
5db8a23
 
 
 
 
 
 
59693da
 
 
 
5db8a23
59693da
58cea02
1689df1
58cea02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356c7d4
90735b6
 
 
c74ec2d
90735b6
58cea02
 
6d04e58
2df0c40
 
76d511e
f575676
 
2c57866
e24862c
2df0c40
e24862c
 
 
 
 
 
 
 
 
2df0c40
59dc088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da8f46
59dc088
 
 
 
2c57866
6d04e58
e79a7d9
59dc088
 
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
d765ee8
18b59a2
d765ee8
18b59a2
d765ee8
 
59dc088
 
c74ec2d
59dc088
c74ec2d
59dc088
76d511e
 
 
59dc088
16fbcab
6db62f0
16fbcab
59dc088
 
76d511e
 
 
 
 
 
59dc088
76d511e
 
 
 
 
 
59dc088
6d04e58
 
 
 
59dc088
6d04e58
 
 
 
59dc088
6d04e58
 
 
 
59dc088
76d511e
 
 
59dc088
16fbcab
6db62f0
16fbcab
f978d14
a19edd8
 
9c82393
a19edd8
 
 
 
 
 
 
 
 
daa425d
9c82393
dd71678
7daa093
9c82393
dd71678
 
9da8f46
dd71678
a19edd8
 
daa425d
7daa093
a19edd8
 
9da8f46
a19edd8
857c2eb
a19edd8
9c82393
 
a19edd8
 
 
 
 
37d804e
a19edd8
 
 
 
f978d14
db00ed7
f978d14
51da0a5
 
 
 
 
 
 
b439c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51da0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f978d14
2804dab
 
 
 
 
 
30aeb4e
 
 
 
 
2804dab
30aeb4e
 
2804dab
30aeb4e
 
 
 
 
2804dab
30aeb4e
2804dab
30aeb4e
d342b82
2804dab
 
 
 
 
 
 
 
 
 
 
30aeb4e
 
 
 
 
2804dab
30aeb4e
 
2804dab
30aeb4e
 
 
 
 
2804dab
30aeb4e
2804dab
30aeb4e
2804dab
 
 
 
 
 
db00ed7
51da0a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
from collections import Counter

## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_contest_file import load_contest_file
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches

player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}

tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
    if st.button('Clear data', key='reset1'):
        st.session_state.clear()
    sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
    # Add file uploaders to your app
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Contest File")
        st.info("Go ahead and upload a Contest file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
        Contest_file = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
        if 'Contest' in st.session_state:
            del st.session_state['Contest']

        if Contest_file:
            contest_base, ownership_df, fpts_df, st.session_state['entry_list'] = load_contest_file(Contest_file, sport_select)
            contest_base = contest_base.dropna(how='all')
            contest_base = contest_base.reset_index(drop=True)
            if contest_base is not None:
                st.success('Contest file loaded successfully!')
                st.dataframe(contest_base.head(10))

    with col2:
        st.subheader("Projections File")
        st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
        
        # Create two columns for the uploader and template button
        upload_col, template_col = st.columns([3, 1])
        
        with upload_col:
            projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
            if 'projections_df' in st.session_state:
                del st.session_state['projections_df']
        
        with template_col:
            # Create empty DataFrame with required columns
            template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
            # Add download button for template
            st.download_button(
                label="Template",
                data=template_df.to_csv(index=False),
                file_name="projections_template.csv",
                mime="text/csv"
            )
            
        if projections_file:
            export_projections, projections = load_file(projections_file)
            if projections is not None:
                st.success('Projections file loaded successfully!')
                st.dataframe(projections.head(10))

    if Contest_file and projections_file:
        if 'Contest' not in st.session_state and 'projections_df' not in st.session_state:
            if contest_base is not None and projections is not None:
                st.subheader("Name Matching functions")
                st.session_state['Contest'], st.session_state['projections_df'], ownership_dict, actual_dict = find_name_mismatches(contest_base, projections, ownership_df, fpts_df)
                st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))

with tab2:
    if 'Contest' in st.session_state and 'projections_df' in st.session_state:
        col1, col2 = st.columns([1, 8])
        excluded_cols = ['BaseName', 'EntryCount']
        player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
        for col in player_columns:
            st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str)
        
        # Create mapping dictionaries
        map_dict = {
            'pos_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
            'team_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
            'salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
            'proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
            'own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
            'own_percent_rank': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
            'cpt_salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
            'cpt_proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
            'cpt_own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
        }
        # Create a copy of the dataframe for calculations
        working_df = st.session_state['Contest'].copy()

        with col1:
            with st.expander("Info and filters"):
                if st.button('Clear data', key='reset3'):
                    st.session_state.clear()
                with st.form(key='filter_form'):
                    type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
                    entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific'])
                    entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
                    submitted = st.form_submit_button("Submit")
                    if submitted:
                        if 'player_frame' in st.session_state:
                            del st.session_state['player_frame']
                        if 'stack_frame' in st.session_state:
                            del st.session_state['stack_frame']
                        # Apply entry name filter if specific entries are selected
                        if entry_parse_var == 'Specific' and entry_names:
                            working_df = working_df[working_df['BaseName'].isin(entry_names)]

        # Calculate metrics based on game type
        st.write(actual_dict)
        if type_var == 'Classic':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row[4:]
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
            working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
            working_df['actual_fpts'] = working_df.apply(lambda row: sum(actual_dict.get(player, 0) for player in row), axis=1)
            working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
            working_df['actual_own'] = working_df.apply(lambda row: sum(ownership_dict.get(player, 0) for player in row), axis=1)
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: ','.join(sorted(row.values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        elif type_var == 'Showdown':
            working_df['stack'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['stack_size'] = working_df.apply(
                lambda row: Counter(
                    map_dict['team_map'].get(player, '') for player in row
                    if map_dict['team_map'].get(player, '') != ''
                ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '',
                axis=1
            )
            working_df['salary'] = working_df.apply(
                lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['median'] = working_df.apply(
                lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['Own'] = working_df.apply(
                lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + 
                            sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
                axis=1
            )
            working_df['sorted'] = working_df[player_columns].apply(
                lambda row: row[0] + '|' + ','.join(sorted(row[1:].values)),
                axis=1
            )
            working_df['dupes'] = working_df.groupby('sorted').transform('size')
            working_df = working_df.reset_index()
            working_df['percentile_finish'] = working_df['index'].rank(pct=True)
            working_df = working_df.drop(['sorted', 'index'], axis=1)
        
        # Initialize pagination in session state if not exists
        if 'current_page' not in st.session_state:
            st.session_state.current_page = 1

        # Calculate total pages
        rows_per_page = 500
        total_rows = len(working_df)
        total_pages = (total_rows + rows_per_page - 1) // rows_per_page

        # Create pagination controls in a single row
        pagination_cols = st.columns([4, 1, 1, 1, 4])
        with pagination_cols[1]:
            if st.button(f"Previous Page"):
                if st.session_state['current_page'] > 1:
                    st.session_state.current_page -= 1
                else:
                    st.session_state.current_page = 1
                    if 'player_frame' in st.session_state:
                        del st.session_state['player_frame']
                    if 'stack_frame' in st.session_state:
                        del st.session_state['stack_frame']

        with pagination_cols[3]:
            if st.button(f"Next Page"):
                st.session_state.current_page += 1
                if 'player_frame' in st.session_state:
                    del st.session_state['player_frame']
                if 'stack_frame' in st.session_state:
                    del st.session_state['stack_frame']

        # Calculate start and end indices for current page
        start_idx = (st.session_state.current_page - 1) * rows_per_page
        end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
        st.dataframe(
            working_df.iloc[start_idx:end_idx].style
            .background_gradient(axis=0)
            .background_gradient(cmap='RdYlGn')
            .format(precision=2), 
            height=500,
            use_container_width=True,
            hide_index=True
        )

        with st.container():
            tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Duplication Info'])
            with tab1:
                if entry_parse_var == 'All':
                    overall_players = pd.Series(list(working_df[player_columns].values.flatten())).value_counts()
                    top_1per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01][player_columns].values.flatten())).value_counts()
                    top_5per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05][player_columns].values.flatten())).value_counts()
                    top_10per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10][player_columns].values.flatten())).value_counts()
                    top_20per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20][player_columns].values.flatten())).value_counts()
                    contest_len = len(working_df)
                    len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
                    len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
                    len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
                    len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
                    each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
                    each_frame_set = [overall_players, top_1per_players, top_5per_players, top_10per_players, top_20per_players]
                    each_len_set = [contest_len, len_1per, len_5per, len_10per, len_20per]
                    player_count_var = 0
                    for each_set in each_frame_set:
                        set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
                        set_frame['Percent'] = set_frame['Count'] / each_len_set[player_count_var]
                        set_frame = set_frame[['Player', 'Percent']]
                        set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'})
                        if 'player_frame' not in st.session_state:
                            st.session_state['player_frame'] = set_frame
                        else:
                            st.session_state['player_frame'] = pd.merge(st.session_state['player_frame'], set_frame, on='Player', how='outer')
                        player_count_var += 1
                    st.dataframe(st.session_state['player_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:
                    overall_players = pd.Series(list(working_df[working_df['BaseName'].isin(entry_names)][player_columns].values.flatten())).value_counts()
                    top_1per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01][player_columns].values.flatten())).value_counts()
                    top_5per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05][player_columns].values.flatten())).value_counts()
                    top_10per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10][player_columns].values.flatten())).value_counts()
                    top_20per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20][player_columns].values.flatten())).value_counts()
                    contest_len = len(working_df)
                    len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
                    len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
                    len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
                    len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
                    each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
                    each_frame_set = [overall_players, top_1per_players, top_5per_players, top_10per_players, top_20per_players]
                    each_len_set = [contest_len, len_1per, len_5per, len_10per, len_20per]
                    player_count_var = 0
                    for each_set in each_frame_set:
                        set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
                        set_frame['Percent'] = set_frame['Count'] / each_len_set[player_count_var]
                        set_frame = set_frame[['Player', 'Percent']]
                        set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'})
                        if 'player_frame' not in st.session_state:
                            st.session_state['player_frame'] = set_frame
                        else:
                            st.session_state['player_frame'] = pd.merge(st.session_state['player_frame'], set_frame, on='Player', how='outer')
                        player_count_var += 1
                    st.dataframe(st.session_state['player_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
                        hide_index=True)
            with tab2:
                if entry_parse_var == 'All':
                    overall_stacks = pd.Series(list(working_df['stack'])).value_counts()
                    top_1per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01]['stack'])).value_counts()
                    top_5per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05]['stack'])).value_counts()
                    top_10per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10]['stack'])).value_counts()
                    top_20per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20]['stack'])).value_counts()
                    stacks_contest_len = len(working_df)
                    stacks_len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
                    stacks_len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
                    stacks_len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
                    stacks_len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
                    each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
                    each_stacks_set = [overall_stacks, top_1per_stacks, top_5per_stacks, top_10per_stacks, top_20per_stacks]
                    each_stacks_len_set = [stacks_contest_len, stacks_len_1per, stacks_len_5per, stacks_len_10per, stacks_len_20per]
                    stack_count_var = 0
                    for each_stack in each_stacks_set:
                        stack_frame = each_stack.to_frame().reset_index().rename(columns={'index': 'Stack', 'count': 'Count'})
                        stack_frame['Percent'] = stack_frame['Count'] / each_stacks_len_set[stack_count_var]
                        stack_frame = stack_frame[['Stack', 'Percent']]
                        stack_frame = stack_frame.rename(columns={'Percent': f'Exposure {each_set_name[stack_count_var]}'})
                        if 'stack_frame' not in st.session_state:
                            st.session_state['stack_frame'] = stack_frame
                        else:
                            st.session_state['stack_frame'] = pd.merge(st.session_state['stack_frame'], stack_frame, on='Stack', how='outer')
                        stack_count_var += 1
                    st.dataframe(st.session_state['stack_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns),
                        hide_index=True)
                else:
                    overall_stacks = pd.Series(list(working_df[working_df['BaseName'].isin(entry_names)]['stack'])).value_counts()
                    top_1per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01]['stack'])).value_counts()
                    top_5per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05]['stack'])).value_counts()
                    top_10per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10]['stack'])).value_counts()
                    top_20per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20]['stack'])).value_counts()
                    stacks_contest_len = len(working_df)
                    stacks_len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
                    stacks_len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
                    stacks_len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
                    stacks_len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
                    each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
                    each_stacks_set = [overall_stacks, top_1per_stacks, top_5per_stacks, top_10per_stacks, top_20per_stacks]
                    each_stacks_len_set = [stacks_contest_len, stacks_len_1per, stacks_len_5per, stacks_len_10per, stacks_len_20per]
                    stack_count_var = 0
                    for each_stack in each_stacks_set:
                        stack_frame = each_stack.to_frame().reset_index().rename(columns={'index': 'Stack', 'count': 'Count'})
                        stack_frame['Percent'] = stack_frame['Count'] / each_stacks_len_set[stack_count_var]
                        stack_frame = stack_frame[['Stack', 'Percent']]
                        stack_frame = stack_frame.rename(columns={'Percent': f'Exposure {each_set_name[stack_count_var]}'})
                        if 'stack_frame' not in st.session_state:
                            st.session_state['stack_frame'] = stack_frame
                        else:
                            st.session_state['stack_frame'] = pd.merge(st.session_state['stack_frame'], stack_frame, on='Stack', how='outer')
                        stack_count_var += 1
                    st.dataframe(st.session_state['stack_frame'].
                        sort_values(by='Exposure Overall', ascending=False).
                        style.background_gradient(cmap='RdYlGn').
                        format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns),
                        hide_index=True)
            with tab3:
                st.write('holding')