File size: 28,092 Bytes
666100e
 
 
 
 
 
1bc5fa9
666100e
18cc217
666100e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3419f9
e35cf54
b4056ee
18cc217
 
 
b12c205
e35cf54
18cc217
e35cf54
18cc217
 
 
 
 
666100e
18cc217
d775ca1
99381b9
 
293e66f
 
 
3d5979b
293e66f
 
5e57ac8
d775ca1
 
 
 
99381b9
293e66f
 
 
3d5979b
293e66f
55ec256
d775ca1
666100e
ca53475
666100e
 
bc57db2
d297b08
bc57db2
 
d0b9163
689500a
bc57db2
 
 
d297b08
bc57db2
 
d0b9163
689500a
bc57db2
 
 
c7a9602
 
0a818cb
d57fbd2
 
e86ca6c
0a818cb
d57fbd2
3d5979b
be550d2
d57fbd2
 
 
 
3d5979b
 
be550d2
3d5979b
 
 
 
d0b9163
c8e8def
d0b9163
 
c8e8def
d0b9163
 
 
 
 
 
 
 
c8e8def
d0b9163
 
 
 
98f93a3
 
d0b9163
 
 
 
 
 
 
 
 
 
 
 
5e57ac8
 
c7a9602
0402531
3b9a49d
dc58382
12c5542
 
 
 
 
 
5e57ac8
 
c7a9602
12c5542
 
 
 
 
d57fbd2
3ed3e6b
 
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
 
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
12c5542
 
d57fbd2
121ea11
3ed3e6b
 
c7a9602
3ed3e6b
c7a9602
3ed3e6b
 
 
c7a9602
3ed3e6b
c7a9602
56b3a6f
c7b114d
7236e02
 
 
 
 
 
 
 
3ed3e6b
12c5542
65bc5b0
c350673
8318870
1eaa246
 
8318870
76f5082
8318870
1eaa246
 
8318870
c350673
 
8318870
1eaa246
 
8318870
76f5082
8318870
1eaa246
 
8318870
c350673
776ebad
 
ea67ea9
2864e61
dc58382
12c5542
 
 
 
 
 
5e57ac8
 
d0b9163
 
 
 
 
48c7fe8
d0b9163
 
48c7fe8
d0b9163
1eaa246
d0b9163
 
 
 
 
 
1eaa246
635d912
a125865
d0b9163
c8e8def
a125865
dcffa27
d0b9163
dcffa27
a125865
dcffa27
fab547d
dcffa27
d0b9163
12c5542
 
c350673
 
 
4cbea25
c350673
 
d297b08
ab9b894
 
c350673
8262e74
 
c350673
8262e74
c350673
8262e74
 
 
 
 
c350673
8262e74
 
 
c350673
8262e74
 
 
c350673
0881c38
 
 
 
 
c350673
 
 
 
 
 
 
4cbea25
c350673
 
d297b08
ab9b894
 
c350673
c8e8def
fa51d53
c350673
48c7fe8
c350673
48c7fe8
 
279cd3e
 
48c7fe8
c350673
48c7fe8
279cd3e
48c7fe8
c350673
48c7fe8
 
 
c350673
0881c38
d1195b4
c350673
d1195b4
 
e9fca92
d1195b4
ea67ea9
e9fca92
ea67ea9
 
e9fca92
ea67ea9
e9fca92
 
 
 
 
 
 
 
1fb647a
ea67ea9
e9fca92
ea67ea9
 
e9fca92
ea67ea9
e9fca92
 
 
 
 
 
 
 
0881c38
ea67ea9
e9fca92
ea67ea9
 
e9fca92
ea67ea9
e9fca92
 
 
85e527a
ea67ea9
e9fca92
ea67ea9
 
e9fca92
ea67ea9
e9fca92
 
 
776ebad
ea67ea9
84ed131
 
 
ea67ea9
 
 
 
 
 
 
 
 
 
 
 
c7b114d
ea67ea9
 
 
 
 
 
 
 
776ebad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo
import time

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["testing_db"]
     
        MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'

        gc_con = gspread.service_account_from_dict(credentials, scope)

        return gc_con, db, MLB_Data
    
gcservice_account, db, MLB_Data = init_conn()

percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']

@st.cache_data(ttl = 599)
def init_DK_seed_frames():  
    
        collection = db["DK_MLB_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 599)
def init_FD_seed_frames():  
    
        collection = db["FD_MLB_seed_frame"] 
        cursor = collection.find()
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
        FD_seed = raw_display.to_numpy()

        return FD_seed

@st.cache_data(ttl = 599)
def init_baselines():
    sh = gcservice_account.open_by_url(MLB_Data)
    
    worksheet = sh.worksheet('Merged_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    load_display['STDev'] = load_display['Median'] / 3
    load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
    
    dk_raw = load_display.dropna(subset=['Median'])
    
    worksheet = sh.worksheet('Merged_FD_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    load_display['STDev'] = load_display['Median'] / 3
    load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
    
    fd_raw = load_display.dropna(subset=['Median'])

    return dk_raw, fd_raw

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

@st.cache_data
def calculate_DK_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :9], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array 

@st.cache_data
def calculate_FD_value_frequencies(np_array):
    unique, counts = np.unique(np_array[:, :8], return_counts=True)
    frequencies = counts / len(np_array)  # Normalize by the number of rows 
    combined_array = np.column_stack((unique, frequencies))  
    return combined_array

@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
    SimVar = 1
    Sim_Winners = []
    fp_array = seed_frame[:sharp_split, :]
    
    # Pre-vectorize functions
    vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
    vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
    
    st.write('Simulating contest on frames')
    
    while SimVar <= Sim_size:
        fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
            
        sample_arrays1 = np.c_[
            fp_random, 
            np.sum(np.random.normal(
                loc=vec_projection_map(fp_random[:, :-6]),
                scale=vec_stdev_map(fp_random[:, :-6])),
            axis=1)
        ]

        sample_arrays = sample_arrays1

        final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
        best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
        Sim_Winners.append(best_lineup)
        SimVar += 1
        
    return Sim_Winners

DK_seed = init_DK_seed_frames()
FD_seed = init_FD_seed_frames()
dk_raw, fd_raw = init_baselines()

tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              DK_seed = init_DK_seed_frames()
              FD_seed = init_FD_seed_frames()
              dk_raw, fd_raw = init_baselines()
              
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        if site_var1 == 'Draftkings':
            raw_baselines = dk_raw
            column_names = dk_columns
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = dk_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [5, 4, 3, 2, 1, 0]
                    
        elif site_var1 == 'Fanduel':
            raw_baselines = fd_raw
            column_names = fd_columns
            
            team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
            if team_var1 == 'Specific Teams':
                    team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
            elif team_var1 == 'Full Slate':
                    team_var2 = fd_raw.Team.values.tolist()
            
            stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
            if stack_var1 == 'Specific Stack Sizes':
                    stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
            elif stack_var1 == 'Full Slate':
                    stack_var2 = [4, 3, 2, 1, 0]
        

        if st.button("Prepare data export", key='data_export'):
                data_export = st.session_state.working_seed.copy()
                st.download_button(
                    label="Export optimals set",
                    data=convert_df(data_export),
                    file_name='MLB_optimals_export.csv',
                    mime='text/csv',
                )
            
    with col2:
        if st.button("Load Data", key='load_data'):
            if site_var1 == 'Draftkings':
                if 'working_seed' in st.session_state:
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                elif 'working_seed' not in st.session_state:
                    st.session_state.working_seed = DK_seed.copy()
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                
            elif site_var1 == 'Fanduel':
                if 'working_seed' in st.session_state:
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                elif 'working_seed' not in st.session_state:
                    st.session_state.working_seed = FD_seed.copy()
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
                    st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
                    st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
                
        with st.container():
            if 'data_export_display' in st.session_state:
                st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
            
with tab1:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset2'):
              st.cache_data.clear()
              for key in st.session_state.keys():
                  del st.session_state[key]
              DK_seed = init_DK_seed_frames()
              FD_seed = init_FD_seed_frames()
              dk_raw, fd_raw = init_baselines()
        sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
        sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
        if sim_site_var1 == 'Draftkings':
            raw_baselines = dk_raw
            column_names = dk_columns
        elif sim_site_var1 == 'Fanduel':
            raw_baselines = fd_raw
            column_names = fd_columns
            
        contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
        if contest_var1 == 'Small':
            Contest_Size = 1000
        elif contest_var1 == 'Medium':
            Contest_Size = 5000
        elif contest_var1 == 'Large':
            Contest_Size = 10000
        elif contest_var1 == 'Custom':
            Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
        strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
        if strength_var1 == 'Not Very':
            sharp_split = 500000
        elif strength_var1 == 'Below Average':
            sharp_split = 400000
        elif strength_var1 == 'Average':
            sharp_split = 300000
        elif strength_var1 == 'Above Average':
            sharp_split = 200000
        elif strength_var1 == 'Very':
            sharp_split = 100000

    
    with col2:
        if st.button("Run Contest Sim"):
            if 'working_seed' in st.session_state:
                maps_dict = {
                        'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                        'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                        'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                        'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own%'])),
                        'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                        'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
                        }
                Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
                
                #st.table(Sim_Winner_Frame)
                            
                # Initial setup
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
                Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
                Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
                Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
                
                # Type Casting
                type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
                Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
                
                # Sorting
                st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
                st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
                
                # Data Copying
                st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
                
                # Data Copying
                st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
                
            else:
                if sim_site_var1 == 'Draftkings':
                    st.session_state.working_seed = DK_seed.copy()
                elif sim_site_var1 == 'Fanduel':
                    st.session_state.working_seed = FD_seed.copy()
                maps_dict = {
                        'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
                        'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
                        'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
                        'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own%'])),
                        'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
                        'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
                        }
                Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
                
                #st.table(Sim_Winner_Frame)
                            
                # Initial setup
                Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
                Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
                Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
                Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
                
                # Type Casting
                type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
                Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
                
                # Sorting
                st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
                st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
                
               # Data Copying
                st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
                
                # Data Copying
                st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
                freq_copy = st.session_state.Sim_Winner_Display
                
            if sim_site_var1 == 'Draftkings':
                freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:10].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            freq_working['Freq'] = freq_working['Freq'].astype(int)
            freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
            freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
            freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
            freq_working['Exposure'] = freq_working['Freq']/(1000)
            freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
            freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
            st.session_state.player_freq = freq_working.copy()

            if sim_site_var1 == 'Draftkings':
                sp_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:2].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                sp_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            sp_working['Freq'] = sp_working['Freq'].astype(int)
            sp_working['Position'] = sp_working['Player'].map(maps_dict['Pos_map'])
            sp_working['Salary'] = sp_working['Player'].map(maps_dict['Salary_map'])
            sp_working['Proj Own'] = sp_working['Player'].map(maps_dict['Own_map']) / 100
            sp_working['Exposure'] = sp_working['Freq']/(1000)
            sp_working['Edge'] = sp_working['Exposure'] - sp_working['Proj Own']
            sp_working['Team'] = sp_working['Player'].map(maps_dict['Team_map'])
            st.session_state.sp_freq = sp_working.copy()

            if sim_site_var1 == 'Draftkings':
                team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,12:13].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            team_working['Freq'] = team_working['Freq'].astype(int)
            team_working['Exposure'] = team_working['Freq']/(1000)
            st.session_state.team_freq = team_working.copy()

            if sim_site_var1 == 'Draftkings':
                stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,13:14].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            elif sim_site_var1 == 'Fanduel':
                stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,12:13].values, return_counts=True)),
                                                columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
            stack_working['Freq'] = stack_working['Freq'].astype(int)
            stack_working['Exposure'] = stack_working['Freq']/(1000)
            st.session_state.stack_freq = stack_working.copy()
            
        with st.container():
            if st.button("Reset Sim", key='reset_sim'):
                for key in st.session_state.keys():
                    del st.session_state[key]
            if 'player_freq' in st.session_state: 
                player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
                if player_split_var2 == 'Specific Players':
                          find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
                elif player_split_var2 == 'Full Players':
                          find_var2 = st.session_state.player_freq.Player.values.tolist()
    
                if player_split_var2 == 'Specific Players':
                          st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
                if player_split_var2 == 'Full Players':
                          st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
            if 'Sim_Winner_Display' in st.session_state:
                st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
            if 'Sim_Winner_Export' in st.session_state:
                st.download_button(
                    label="Export Full Frame",
                    data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
                    file_name='MLB_consim_export.csv',
                    mime='text/csv',
                )  
                
        with st.container():
            tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
            with tab1:
                if 'player_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.player_freq.to_csv().encode('utf-8'),
                        file_name='player_freq_export.csv',
                        mime='text/csv',
                        key='overall'
                    )
            with tab2:
                if 'sp_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.sp_freq.to_csv().encode('utf-8'),
                        file_name='sp_freq.csv',
                        mime='text/csv',
                        key='sp'
                    )
            with tab3:
                if 'team_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.team_freq.to_csv().encode('utf-8'),
                        file_name='team_freq.csv',
                        mime='text/csv',
                        key='team'
                    )
            with tab4:
                if 'stack_freq' in st.session_state:
                    
                    st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
                    st.download_button(
                        label="Export Exposures",
                        data=st.session_state.stack_freq.to_csv().encode('utf-8'),
                        file_name='stack_freq.csv',
                        mime='text/csv',
                        key='stack'
                    )