File size: 8,560 Bytes
73c9569
c2250b6
568a490
fe42c39
2a84894
e715c6b
 
7db9774
b0d53fc
 
2a84894
 
b0d53fc
f125e9c
e715c6b
 
f125e9c
4ccccb3
e715c6b
 
 
 
 
 
 
ec8bfb4
e715c6b
 
 
357e5f2
e715c6b
3b72fd6
26c448b
78f9bd7
e715c6b
7f50a5f
0bc5b18
b937596
377be67
b0d53fc
78f9bd7
73c9569
377be67
e715c6b
377be67
2a84894
377be67
b0d53fc
 
 
e715c6b
b0d53fc
 
73c9569
b0d53fc
 
 
 
 
 
c1ea140
 
b0d53fc
 
 
b1318a8
b0d53fc
73c9569
e715c6b
377be67
c494c5e
377be67
 
 
 
 
2a84894
 
73c9569
3ae2ed2
73c9569
377be67
e715c6b
377be67
 
e715c6b
377be67
e9b987a
2a84894
e9b987a
e715c6b
 
340946e
e715c6b
b0d53fc
2a84894
b0d53fc
e715c6b
 
 
 
 
 
2a84894
b0d53fc
 
 
 
377be67
b0d53fc
 
 
 
 
 
 
 
 
 
7fa1620
 
 
 
 
b0d53fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a84894
 
 
 
 
b0d53fc
 
 
 
2a84894
b0d53fc
 
2a84894
b0d53fc
baaaa9b
 
7fa1620
b0d53fc
c1ea140
b0d53fc
 
 
 
 
 
7b100d1
 
 
 
 
 
 
b0d53fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c9569
e715c6b
b0d53fc
 
 
 
 
 
 
 
 
 
 
e715c6b
 
377be67
 
e715c6b
377be67
73c9569
2a84894
377be67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a84894
b0d53fc
 
 
 
 
8a37cce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from datasets import load_dataset
from datasets import Dataset
from sentence_transformers import SentenceTransformer
import faiss
import time
#import torch
import pandas as pd

from transformers import AutoTokenizer, GenerationConfig #, AutoModelForCausalLM
#from transformers import AutoModelForCausalLM, AutoModel
from transformers import TextIteratorStreamer
from threading import Thread
from ctransformers import AutoModelForCausalLM, AutoConfig, Config #, AutoTokenizer

from huggingface_hub import Repository, upload_file
import os


HF_TOKEN = os.getenv('HF_Token')
#Log_Path="./Logfolder"
logfile = 'DiabetesChatLog.txt'
historylog = [{
        "Prompt": '',
        "Output": ''
}]

data = load_dataset("Namitg02/Test", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)

embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng


index =  faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index) 
# adds an index column for the embeddings

print("check1")
#question = "How can I reverse Diabetes?"

SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of documents and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
# Provides context of how to answer the question

llm_model = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
# TheBloke/Llama-2-7B-Chat-GGML , TinyLlama/TinyLlama-1.1B-Chat-v1.0 , microsoft/Phi-3-mini-4k-instruct, health360/Healix-1.1B-V1-Chat-dDPO
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF and tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf not working, TinyLlama/TinyLlama-1.1B-Chat-v0.6, andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF"

tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
#initiate model and tokenizer

generation_config = AutoConfig.from_pretrained(
    "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
    max_new_tokens= 300,
  #  do_sample=True,
  #  stream = streamer,
    top_p=0.95,
    temperature=0.4,
    stream = True
  #  eos_token_id=terminators
)
# send additional parameters to model for generation

model = AutoModelForCausalLM.from_pretrained(llm_model, model_file = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", model_type="llama", gpu_layers=0, config = generation_config)

def search(query: str, k: int = 2 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = embedding_model.encode(query) # create embedding of a new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt

#print(scores, retrieved_examples)

def format_prompt(prompt,retrieved_documents,k):
    """using the retrieved documents we will prompt the model to generate our responses"""   
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['0'][idx]}\n"
    return PROMPT

# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived

def talk(prompt, history):
    k = 2 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
    print(retrieved_documents.keys())
    print("check4")
    formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
    print("check5")
    print(retrieved_documents['0'])
    print(formatted_prompt)
    formatted_prompt = formatted_prompt[:600] # to avoid memory issue
    print(formatted_prompt)
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]  
    # binding the system context and new prompt for LLM
    # the chat template structure should be based on text generation model format
    print("check6")    
    
    streamer = TextIteratorStreamer(
    tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )
    # stores print-ready text in a queue, to be used by a downstream application as an iterator. removes special tokens in generated text. 
    # timeout for text queue. tokenizer for decoding tokens
    # called by generate_kwargs

    terminators = [
      tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
      tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
    ]
# indicates the end of a sequence

    input_ids = tokenizer.apply_chat_template(
      messages,
      add_generation_prompt=True,
      return_tensors="pt"  
     )
    # preparing tokens for model input
    # add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
#    print(input_ids)
#    print("check7")  
#    print(input_ids.dtype)

#    generate_kwargs = dict(
#        tokens= input_ids) #,
#        streamer=streamer,
#        do_sample=True,
#        eos_token_id=terminators,
#    )
    
  #  outputs = model.generate( 
  #  )
  #  print(outputs)
    # calling the model to generate response based on message/ input
    # do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
    # temperature controls randomness. more renadomness with higher temperature
    # only the tokens comprising the top_p probability mass are considered for responses
    # This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
 #  
    
 #   print("check10")
 #   t = Thread(target=model.generate, kwargs=generate_kwargs)
    # to process multiple instances
 #   t.start()
  #  print("check11")
    # start a thread
    outputs = []  
    print(messages)
    print(*messages)
 #   input_ids = tokenizer(*messages)

    print(model.generate(tensor([[    1,   529, 29989,  5205, 29989]])))
    start = time.time()
    NUM_TOKENS=0
    print('-'*4+'Start Generation'+'-'*4)
    for token in model.generate(input_ids):
    	print(model.detokenize(input_ids), end='', flush=True)
    	NUM_TOKENS+=1
    time_generate = time.time() - start
    print('\n')
    print('-'*4+'End Generation'+'-'*4)
    print(f'Num of generated tokens: {NUM_TOKENS}')
    print(f'Time for complete generation: {time_generate}s')
    print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
    print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')


    #outputtokens =  model.generate(input_ids)
    print("check9")
    #print(outputtokens)
    
    #outputs = model.detokenize(outputtokens, decode = True)
    #print(outputs)
#    for token in model.generate(input_ids):
#      print(model.detokenize(token))
  #      outputs.append(model.detokenize(token))
  #     output = model.detokenize(token)
  #     print(outputs)
       # yield "".join(outputs)
       # print("check12")

    pd.options.display.max_colwidth = 800
    print("check13")
#    outputstring = ''.join(outputs)

#    global historylog
#    historynew = {
#       "Prompt": prompt,
#       "Output": outputstring
#    }
#    historylog.append(historynew)
#    return historylog
#    print(historylog)
    
    
TITLE = "AI Copilot for Diabetes Patients"

DESCRIPTION = "I provide answers to concerns related to Diabetes"

import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what is Diabetes? "]],
    title=TITLE,
    description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check14")
#print(historylog)
#memory_panda = pd.DataFrame(historylog)
#Logfile = Dataset.from_pandas(memory_panda)
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
demo.launch()