File size: 12,650 Bytes
93a8bce
93f5629
4a03e59
93f5629
e88a32d
12cea06
1ea7edd
d5a469d
67f3560
 
 
 
 
 
 
4378fd8
b1387d5
e88a32d
 
93f5629
 
67f3560
 
 
 
 
 
 
 
 
52ae10e
67f3560
 
 
 
 
 
 
 
4a03e59
67f3560
 
 
 
 
 
d9b67e8
67f3560
387e421
67f3560
 
4a03e59
67f3560
 
d5a469d
67f3560
 
8ef48b9
67f3560
8ef48b9
67f3560
 
 
57b2083
67f3560
57b2083
 
 
 
 
 
 
 
 
 
 
67f3560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c65deae
67f3560
d5a469d
4a03e59
e88a32d
7820a52
 
 
 
 
 
12cea06
f0208ec
2484926
67f3560
b6b6807
57b2083
 
67f3560
 
7513f66
52ae10e
1d42aa4
 
 
 
387e421
67f3560
52ae10e
8ef48b9
67f3560
7513f66
4378fd8
d789973
4378fd8
77f3a53
 
30c764e
77f3a53
30c764e
77f3a53
b29bd8c
77f3a53
30c764e
77f3a53
30c764e
3bc1c8a
179d07c
d789973
 
 
 
 
 
 
b29bd8c
d789973
 
 
 
 
 
 
 
 
 
b29bd8c
d789973
 
 
 
 
 
 
b29bd8c
3cb2f30
 
d789973
 
 
 
 
 
b29bd8c
77f3a53
b29bd8c
 
d789973
 
 
179d07c
3cb2f30
 
d789973
 
 
 
 
 
179d07c
 
 
 
 
 
d789973
4378fd8
 
 
179d07c
4378fd8
 
 
 
 
a9d7990
4439436
2669b96
4439436
 
b29bd8c
4439436
3933565
f0208ec
4439436
cbd537f
b29bd8c
179d07c
f0208ec
30c764e
bd23e86
 
 
4439436
407a629
 
cbd537f
407a629
 
 
 
 
 
 
9e875de
407a629
 
 
e88a32d
8a3f635
4439436
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
import io
import logging
from utils.utils import softmax, augment_image, convert_pil_to_bytes


# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


# Model paths and class names
MODEL_PATHS = {
    "model_1": "haywoodsloan/ai-image-detector-deploy",
    "model_2": "Heem2/AI-vs-Real-Image-Detection",
    "model_3": "Organika/sdxl-detector",
    "model_4": "cmckinle/sdxl-flux-detector",
    "model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
    "model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22"
}

CLASS_NAMES = {
    "model_1": ['artificial', 'real'],
    "model_2": ['AI Image', 'Real Image'],
    "model_3": ['AI', 'Real'],
    "model_4": ['AI', 'Real'],
    "model_5": ['Realism', 'Deepfake'],
    "model_5b": ['Real', 'Deepfake']
}

# Load models and processors
def load_models():
    image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
    model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"])
    model_1 = model_1.to(device)
    clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)

    clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)

    feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
    model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)

    feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
    model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)

    clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
    clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)

    return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b

clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b = load_models()

@spaces.GPU(duration=10)
def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id, feature_extractor=None):
    try:
        if feature_extractor:
            inputs = feature_extractor(img_pil, return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = clf(**inputs)
            logits = outputs.logits
            probabilities = softmax(logits.cpu().numpy()[0])
            result = {class_names[i]: probabilities[i] for i in range(len(class_names))}
        else:
            prediction = clf(img_pil)
            result = {pred['label']: pred['score'] for pred in prediction}

        result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)]
        logger.info(result_output)
        for class_name in class_names:
            if class_name not in result:
                result[class_name] = 0.0
        if result[class_names[0]] >= confidence_threshold:
            label = f"AI, Confidence: {result[class_names[0]]:.4f}"
            result_output.append('AI')
        elif result[class_names[1]] >= confidence_threshold:
            label = f"Real, Confidence: {result[class_names[1]]:.4f}"
            result_output.append('REAL')
        else:
            label = "Uncertain Classification"
            result_output.append('UNCERTAIN')
    except Exception as e:
        label = f"Error: {str(e)}"
        result_output = [model_id, model_name, 0.0, 0.0, 'ERROR']  # Ensure result_output is assigned in case of error
    return label, result_output

@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
    if not isinstance(img, Image.Image):
        raise ValueError(f"Expected a PIL Image, but got {type(img)}")
    if img.mode != 'RGB':
        img_pil = img.convert('RGB')
    else:
        img_pil = img
    img_pil = transforms.Resize((256, 256))(img_pil)
    img_pilvits = transforms.Resize((224, 224))(img_pil)

    label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
    label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2)
    label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3, feature_extractor_3)
    label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4, feature_extractor_4)
    label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
    label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)

    combined_results = {
        "SwinV2/detect": label_1,
        "ViT/AI-vs-Real": label_2,
        "Swin/SDXL": label_3,
        "Swin/SDXL-FLUX": label_4,
        "prithivMLmods": label_5,
        "prithivMLmods-2-22": label_5b
    }

    combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
    return img_pil, combined_outputs
# Define a function to generate the HTML content

def generate_results_html(results):
    def get_header_color(label):
        if label == 'AI':
            return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200'
        elif label == 'REAL':
            return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200'
        elif label == 'UNCERTAIN':
            return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200'
        elif label == 'MAINTENANCE':
            return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200'
        else:
            return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200'

    def generate_tile_html(index, result, model_name, contributor, model_path):
        label = result[-1]
        header_colors = get_header_color(label)
        real_conf = result[2]
        ai_conf = result[3]
        return f"""
        <div
            class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
            <div
                class="-m-4 h-24 {header_colors[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{header_colors[4]}">
                <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL {index + 1}:</span>
                <span
                    class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {header_colors[2]} px-1 py-0.5 {header_colors[3]}"
                >
                    <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                        {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if label == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                    </svg>
                    <p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{label}</p>
                </span>
            </div>
            <div>
                <div class="mt-4 relative -mx-4 bg-gray-800">
                    <div class="w-full bg-gray-400 rounded-none h-8">
                        <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {real_conf * 100:.2f}%;">
                            <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                <span class="ml-1 font-medium font-mono">{real_conf:.4f}</span>
                            </p>
                        </div>
                    </div>
                </div>
                <div class="relative -mx-4 bg-gray-800">
                    <div class="w-full bg-gray-400 rounded-none h-8">
                        <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {ai_conf * 100:.2f}%;">
                            <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                <span class="ml-1 font-medium font-mono">{ai_conf:.4f}</span>
                            </p>
                        </div>
                    </div>
                </div>
            </div>
            <div class="flex flex-col items-start">
                <h4 class="mt-4 text-sm font-semibold tracking-wide">{model_name}</h4>
                <div class="text-xs font-mono">Real: {real_conf:.4f}, AI: {ai_conf:.4f}</div>
                <a href="https://huggingface.co/{model_path}" target="_blank" class="mt-2 text-xs tracking-wide">by @{contributor}</a>
            </div>
        </div>
        """

    html_content = f"""
    <link href="https://unpkg.com/[email protected]/dist/tailwind.min.css" rel="stylesheet">
    <div class="container mx-auto">
        <div class="grid xl:grid-cols-5 md:grid-cols-5 grid-cols-1 gap-1">
            {generate_tile_html(0, results[0], "SwinV2 Based", "haywoodsloan", MODEL_PATHS["model_1"])}
            {generate_tile_html(1, results[1], "ViT Based", "Heem2", MODEL_PATHS["model_2"])}
            {generate_tile_html(2, results[2], "SDXL Dataset", "Organika", MODEL_PATHS["model_3"])}
            {generate_tile_html(3, results[3], "SDXL + FLUX", "cmckinle", MODEL_PATHS["model_4"])}
            {generate_tile_html(4, results[4], "Vit Based", "prithivMLmods", MODEL_PATHS["model_5"])}
            {generate_tile_html(5, results[5], "Vit Based, Newer Dataset", "prithivMLmods", MODEL_PATHS["model_5b"])}
        </div>
    </div>
    """
    return html_content

def predict_image_with_html(img, confidence_threshold):
    img_pil, results = predict_image(img, confidence_threshold)
    html_content = generate_results_html(results)
    return img_pil, html_content

# Define the Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# AI Generated Image / Deepfake Detection Models Evaluation")
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
            with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
                confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
            inputs = [image_input, confidence_slider]
            predict_button = gr.Button("Predict")
        with gr.Column(scale=2):
            with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
                gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
            image_output = gr.Image(label="Processed Image", visible=False)
            # Custom HTML component to display results in 5 columns
            results_html = gr.HTML(label="Model Predictions")
            outputs = [image_output, results_html]
    
    # gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
    
    
    predict_button.click(
        fn=predict_image_with_html, 
        inputs=inputs, 
        outputs=outputs
    )
    predict_button.click(
        fn=None, 
        js="() => {document.getElementById('project_accordion').open = false;}",  # Close the project accordion
        inputs=[], 
        outputs=[]
    )

# Launch the interface
iface.launch()