File size: 31,187 Bytes
93a8bce 93f5629 4a03e59 93f5629 e88a32d 12cea06 1ea7edd 2669b96 d5a469d 4378fd8 b1387d5 e88a32d 93f5629 52ae10e b1387d5 52ae10e 93f5629 52ae10e fa24808 09e67fe 52ae10e 4a03e59 09e67fe 113bed9 09e67fe 113bed9 4a03e59 d9b67e8 387e421 4a03e59 52ae10e 4a03e59 113bed9 d9b67e8 387e421 4a03e59 1ea7edd 4a03e59 d5a469d 8ef48b9 d5a469d 4a03e59 e88a32d 52ae10e 7820a52 bd23e86 7820a52 12cea06 d9b67e8 f0208ec a9d7990 52ae10e b29bd8c 2484926 52ae10e 1d42aa4 2484926 52ae10e 1d42aa4 2484926 52ae10e 2484926 52ae10e 2484926 52ae10e d9b67e8 52ae10e b29bd8c 2484926 52ae10e b1387d5 1d42aa4 2484926 b1387d5 1d42aa4 2484926 52ae10e 2484926 52ae10e a9d7990 1ea7edd 4a03e59 113bed9 1ea7edd 113bed9 2484926 113bed9 b29bd8c 2484926 4a03e59 113bed9 4a03e59 1d42aa4 2484926 4a03e59 1d42aa4 2484926 4a03e59 2484926 4a03e59 1ea7edd 4a03e59 113bed9 1ea7edd 113bed9 2484926 113bed9 b29bd8c 268b7e1 4a03e59 113bed9 4a03e59 1d42aa4 2484926 4a03e59 1d42aa4 2484926 4a03e59 2484926 4a03e59 bd23e86 d5a469d d9b67e8 24e07c9 d9b67e8 d7d030d d9b67e8 d7d030d d9b67e8 d5a469d d7d030d edf85c0 387e421 d9b67e8 7513f66 52ae10e 1d42aa4 387e421 52ae10e 8ef48b9 387e421 7513f66 8ef48b9 7513f66 52ae10e b29bd8c 4378fd8 77f3a53 30c764e 77f3a53 30c764e 77f3a53 b29bd8c 77f3a53 30c764e 77f3a53 30c764e dd0760e b29bd8c 4378fd8 28af384 3bc1c8a cd4052c 7c1f022 1835e62 b29bd8c 8ef48b9 b29bd8c 06126f5 b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 77f3a53 b29bd8c 9bdd986 e60282c dd0760e b29bd8c 77f3a53 06126f5 9bdd986 e60282c b29bd8c dd0760e b29bd8c 77f3a53 b29bd8c 8ef48b9 b29bd8c 8ef48b9 d9b67e8 3cb2f30 b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 9bdd986 e60282c b29bd8c dd0760e b29bd8c 77f3a53 30c764e 9bdd986 e60282c b29bd8c dd0760e b29bd8c 77f3a53 b29bd8c 8ef48b9 dd0760e 8ef48b9 d9b67e8 b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 9bdd986 e60282c b29bd8c dd0760e b29bd8c 3cb2f30 a26ccca 9bdd986 e60282c b29bd8c dd0760e b29bd8c 3cb2f30 b29bd8c d9b67e8 8ef48b9 dd0760e 8ef48b9 d9b67e8 b29bd8c 8ef48b9 b29bd8c 06126f5 b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 9bdd986 e60282c b29bd8c dd0760e b29bd8c 77f3a53 a26ccca 9bdd986 e60282c b29bd8c dd0760e b29bd8c 77f3a53 b29bd8c d9b67e8 8ef48b9 dd0760e 8ef48b9 d9b67e8 b29bd8c 407a629 b29bd8c 8ef48b9 b29bd8c d7d030d b29bd8c 8ef48b9 b29bd8c a26ccca b29bd8c 407a629 b29bd8c 9bdd986 e60282c b29bd8c dd0760e b29bd8c 3cb2f30 a26ccca 9bdd986 e60282c b29bd8c dd0760e b29bd8c 3cb2f30 b29bd8c d9b67e8 8ef48b9 dd0760e 387e421 8ef48b9 d9b67e8 b29bd8c 3cb2f30 4378fd8 a9d7990 4439436 2669b96 4439436 b29bd8c 4439436 3933565 f0208ec 4439436 b29bd8c 3933565 f0208ec 30c764e bd23e86 4439436 407a629 9e875de 407a629 e88a32d 8a3f635 4439436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
# from utils.goat import call_inference / announcement soon
import io
import warnings
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path, device=device)
# Load additional models
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
# Load the second model
model_5_path = "prithivMLmods/Deep-Fake-Detector-v2-Model"
clf_5 = pipeline("image-classification", model=model_5_path, device=device)
model_5b_path = "prithivMLmods/Deepfake-Detection-Exp-02-22"
clf_5b = pipeline("image-classification", model=model_5b_path, device=device)
# Define class names for all models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image']
labels_3 = ['AI', 'Real']
labels_4 = ['AI', 'Real']
class_names_5 = ['Realism', 'Deepfake']
class_names_5b = ['Real', 'Deepfake']
def softmax(vector):
e = np.exp(vector - np.max(vector)) # for numerical stability
return e / e.sum()
def augment_image(img_pil):
# Example augmentation: horizontal flip
transform_flip = transforms.Compose([
transforms.RandomHorizontalFlip(p=1.0) # Flip the image horizontally with probability 1.0
])
# Example augmentation: rotation
transform_rotate = transforms.Compose([
transforms.RandomRotation(degrees=(90, 90)) # Rotate the image by 90 degrees
])
augmented_img_flip = transform_flip(img_pil)
augmented_img_rotate = transform_rotate(img_pil)
return augmented_img_flip, augmented_img_rotate
# def convert_pil_to_bytes(img_pil):
# img_byte_arr = io.BytesIO()
# img_pil.save(img_byte_arr, format='PNG')
# img_byte_arr = img_byte_arr.getvalue()
# return img_byte_arr
def convert_pil_to_bytes(image, format='JPEG'):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format=format)
img_byte_arr = img_byte_arr.getvalue()
return img_byte_arr
@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
# Ensure the image is a PIL Image
if not isinstance(img, Image.Image):
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
# Convert the image to RGB if not already
if img.mode != 'RGB':
img_pil = img.convert('RGB')
else:
img_pil = img
# Resize the image
img_pil = transforms.Resize((256, 256))(img_pil)
# Size 224 for vits models
img_pilvits = transforms.Resize((224, 224))(img_pil)
# Predict using the first model
try:
prediction_1 = clf_1(img_pil)
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
result_1output = [1, 'SwinV2-base', result_1['real'], result_1['artificial']]
print(result_1output)
# Ensure the result dictionary contains all class names
for class_name in class_names_1:
if class_name not in result_1:
result_1[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_1['artificial'] >= confidence_threshold:
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
result_1output += ['AI']
elif result_1['real'] >= confidence_threshold:
label_1 = f"Real, Confidence: {result_1['real']:.4f}"
result_1output += ['REAL']
else:
label_1 = "Uncertain Classification"
result_1output += ['UNCERTAIN']
except Exception as e:
label_1 = f"Error: {str(e)}"
print(result_1output)
# Predict using the second model
try:
prediction_2 = clf_2(img_pilvits)
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
result_2output = [2, 'ViT-base Classifer', result_2['Real Image'], result_2['AI Image']]
print(result_2output)
# Ensure the result dictionary contains all class names
for class_name in class_names_2:
if class_name not in result_2:
result_2[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_2['AI Image'] >= confidence_threshold:
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
result_2output += ['AI']
elif result_2['Real Image'] >= confidence_threshold:
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
result_2output += ['REAL']
else:
label_2 = "Uncertain Classification"
result_2output += ['UNCERTAIN']
except Exception as e:
label_2 = f"Error: {str(e)}"
# Predict using the third model with softmax
try:
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs_3 = model_3(**inputs_3)
logits_3 = outputs_3.logits
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
result_3 = {
labels_3[1]: float(probabilities_3[1]), # Real
labels_3[0]: float(probabilities_3[0]) # AI
}
result_3output = [3, 'SDXL-Trained', float(probabilities_3[1]), float(probabilities_3[0])]
print(result_3output)
# Ensure the result dictionary contains all class names
for class_name in labels_3:
if class_name not in result_3:
result_3[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_3['AI'] >= confidence_threshold:
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
result_3output += ['AI']
elif result_3['Real'] >= confidence_threshold:
label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
result_3output += ['REAL']
else:
label_3 = "Uncertain Classification"
result_3output += ['UNCERTAIN']
except Exception as e:
label_3 = f"Error: {str(e)}"
# Predict using the fourth model with softmax
try:
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs_4 = model_4(**inputs_4)
logits_4 = outputs_4.logits
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
result_4 = {
labels_4[1]: float(probabilities_4[1]), # Real
labels_4[0]: float(probabilities_4[0]) # AI
}
result_4output = [4, 'SDXL + FLUX', float(probabilities_4[1]), float(probabilities_4[0])]
print(result_4)
# Ensure the result dictionary contains all class names
for class_name in labels_4:
if class_name not in result_4:
result_4[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_4['AI'] >= confidence_threshold:
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
result_4output += ['AI']
elif result_4['Real'] >= confidence_threshold:
label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
result_4output += ['REAL']
else:
label_4 = "Uncertain Classification"
result_4output += ['UNCERTAIN']
except Exception as e:
label_4 = f"Error: {str(e)}"
try:
prediction_5 = clf_5(img_pilvits)
result_5 = {pred['label']: pred['score'] for pred in prediction_5}
result_5output = [5, 'ViT-base Newcomer', result_5['Realism'], result_5['Deepfake']]
# Ensure the result dictionary contains all class names
for class_name in class_names_5:
if class_name not in result_5:
result_5[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_5['Deepfake'] >= confidence_threshold:
label_5 = f"AI, Confidence: {result_5['Deepfake']:.4f}"
result_5output += ['AI']
elif result_5['Real Image'] >= confidence_threshold:
label_5 = f"Real, Confidence: {result_5['Realism']:.4f}"
result_5output += ['REAL']
else:
label_5 = "Uncertain Classification"
result_5output += ['UNCERTAIN']
except Exception as e:
label_5 = f"Error: {str(e)}"
print(result_5output)
try:
prediction_5b = clf_5b(img_pilvits)
result_5b = {pred['label']: pred['score'] for pred in prediction_5b}
result_5boutput = [6, 'ViT-base Newcomer', result_5b['Real'], result_5b['Deepfake']]
# Ensure the result dictionary contains all class names
for class_name in class_names_5b:
if class_name not in result_5b:
result_5b[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_5b['Deepfake'] >= confidence_threshold:
label_5b = f"AI, Confidence: {result_5b['Deepfake']:.4f}"
result_5boutput += ['AI']
elif result_5b['Real Image'] >= confidence_threshold:
label_5b = f"Real, Confidence: {result_5b['Real']:.4f}"
result_5boutput += ['REAL']
else:
label_5b = "Uncertain Classification"
result_5boutput += ['UNCERTAIN']
except Exception as e:
label_5b = f"Error: {str(e)}"
print(result_5boutput)
# try:
# result_5output = [5, 'TBA', 0.0, 0.0, 'MAINTENANCE']
# img_bytes = convert_pil_to_bytes(img_pil)
# # print(img)
# # print(img_bytes)
# response5_raw = call_inference(img)
# print(response5_raw)
# response5 = response5_raw
# print(response5)
# label_5 = f"Result: {response5}"
# except Exception as e:
# label_5 = f"Error: {str(e)}"
# Combine results
combined_results = {
"SwinV2/detect": label_1,
"ViT/AI-vs-Real": label_2,
"Swin/SDXL": label_3,
"Swin/SDXL-FLUX": label_4,
"prithivMLmods": label_5,
"prithivMLmods-2-22": label_5b
}
# Generate HTML content
combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput ]
# html_content = generate_results_html(combined_outputs)
return img_pil, combined_outputs
# Define a function to generate the HTML content
# Define a function to generate the HTML content
def generate_results_html(results):
def get_header_color(label):
if label == 'AI':
return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200'
elif label == 'REAL':
return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200'
elif label == 'UNCERTAIN':
return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200'
elif label == 'MAINTENANCE':
return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200'
else:
return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200'
html_content = f"""
<link href="https://unpkg.com/[email protected]/dist/tailwind.min.css" rel="stylesheet">
<div class="container mx-auto">
<div class="grid xl:grid-cols-5 md:grid-cols-5 grid-cols-1 gap-1">
<!-- Tile 1: SwinV2/detect -->
<div
class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
<div
class="-m-4 h-24 {get_header_color(results[0][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg">
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 1:</span>
<span
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[0][-1])[2]} px-1 py-0.5 {get_header_color(results[0][-1])[3]}"
>
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[0][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
</svg>
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[0][-1]}</p>
</span>
</div>
<div>
<div class="mt-4 relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[0][2] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[0][2]:.4f}</span>
</p>
</div>
</div>
</div>
<div class="relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[0][3] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[0][3]:.4f}</span>
</p>
</div>
</div>
</div>
</div>
<div class="flex flex-col items-start">
<h4 class="mt-4 text-sm font-semibold tracking-wide">SwinV2 Based</h4>
<div class="text-xs font-mono">Real: {results[0][2]:.4f}, AI: {results[0][3]:.4f}</div>
<a class="mt-2 text-xs tracking-wide">@haywoodsloan / more info</a>
</div>
</div>
<!-- Tile 2: ViT/AI-vs-Real -->
<div
class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
<div
class="-m-4 h-24 {get_header_color(results[1][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[1][-1])[4]}">
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 2:</span>
<span
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[1][-1])[2]} px-1 py-0.5 {get_header_color(results[1][-1])[3]}"
>
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[1][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
</svg>
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[1][-1]}</p>
</span>
</div>
<div>
<div class="mt-4 relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[1][2] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[1][2]:.4f}</span>
</p>
</div>
</div>
</div>
<div class="relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[1][3] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[1][3]:.4f}</span>
</p>
</div>
</div>
</div>
</div>
<div class="flex flex-col items-start">
<h4 class="mt-4 text-sm font-semibold tracking-wide">ViT Based</h4>
<div class="text-xs font-mono">Real: {results[1][2]:.4f}, AI: {results[1][3]:.4f}</div>
<a class="mt-2 text-xs tracking-wide">@Heem2 / more info</a>
</div>
</div>
<!-- Tile 3: Swin/SDXL -->
<div
class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
<div
class="-m-4 h-24 {get_header_color(results[2][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[2][-1])[4]}">
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 3:</span>
<span
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[2][-1])[2]} px-1 py-0.5 {get_header_color(results[2][-1])[3]}"
>
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[2][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
</svg>
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[2][-1]}</p>
</span>
</div>
<div>
<div class="mt-4 relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[2][2] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[2][2]:.4f}</span>
</p>
</div>
</div>
</div>
<div class="relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[2][3] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[2][3]:.4f}</span>
</p>
</div>
</div>
</div>
</div>
<div class="flex flex-col items-start">
<h4 class="mt-4 text-sm font-semibold tracking-wide">SDXL Dataset</h4>
<div class="text-xs font-mono">Real: {results[2][2]:.4f}, AI: {results[2][3]:.4f}</div>
<a class="mt-2 text-xs tracking-wide">@Organika / more info</a>
</div>
</div>
<!-- Tile 4: Swin/SDXL-FLUX -->
<div
class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
<div
class="-m-4 h-24 {get_header_color(results[3][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[3][-1])[4]}">
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 4:</span>
<span
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[3][-1])[2]} px-1 py-0.5 {get_header_color(results[3][-1])[3]}"
>
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[3][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
</svg>
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[3][-1]}</p>
</span>
</div>
<div>
<div class="mt-4 relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[3][2] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[3][2]:.4f}</span>
</p>
</div>
</div>
</div>
<div class="relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[3][3] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[3][3]:.4f}</span>
</p>
</div>
</div>
</div>
</div>
<div class="flex flex-col items-start">
<h4 class="mt-4 text-sm font-semibold tracking-wide">SDXL + FLUX</h4>
<div class="text-xs font-mono">Real: {results[3][2]:.4f}, AI: {results[3][3]:.4f}</div>
<a class="mt-2 text-xs tracking-wide">@cmckinle / more info</a>
</div>
</div>
<!-- Tile 5: Newcomer -->
<div
class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
<div
class="-m-4 h-24 {get_header_color(results[4][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[4][-1])[4]}">
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 5:</span>
<span
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[4][-1])[2]} px-1 py-0.5 {get_header_color(results[4][-1])[3]}"
>
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[4][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
</svg>
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[4][-1]}</p>
</span>
</div>
<div>
<div class="mt-4 relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[4][2] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[4][2]:.4f}</span>
</p>
</div>
</div>
</div>
<div class="relative -mx-4 bg-gray-800">
<div class="w-full bg-gray-400 rounded-none h-8">
<div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[4][3] * 100:.2f}%;">
<p class="p-2 px-4 text-xs self-center align-middle">Conf:
<span class="ml-1 font-medium font-mono">{results[4][3]:.4f}</span>
</p>
</div>
</div>
</div>
</div>
<div class="flex flex-col items-start">
<h4 class="mt-4 text-sm font-semibold tracking-wide">Vits Model</h4>
<div class="text-xs font-mono">Real: {results[4][2]:.4f}, AI: {results[4][3]:.4f}</div>
<div class="text-xs font-mono">Real: {results[5][2]:.4f}, AI: {results[5][3]:.4f}</div>
<a class="mt-2 text-xs tracking-wide">@prithivMLmods / more info</a>
</div>
</div>
</div>
</div>
"""
return html_content
# Modify the predict_image function to return the HTML content
def predict_image_with_html(img, confidence_threshold):
img_pil, results = predict_image(img, confidence_threshold)
html_content = generate_results_html(results)
return img_pil, html_content
# Define the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# AI Generated Image / Deepfake Detection Models Evaluation")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
inputs = [image_input, confidence_slider]
with gr.Column(scale=2):
with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=True, elem_id="project_accordion"):
gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
image_output = gr.Image(label="Processed Image", visible=False)
# Custom HTML component to display results in 5 columns
results_html = gr.HTML(label="Model Predictions")
outputs = [image_output, results_html]
# gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
predict_button = gr.Button("Predict")
predict_button.click(
fn=predict_image_with_html,
inputs=inputs,
outputs=outputs
)
predict_button.click(
fn=None,
js="() => {document.getElementById('project_accordion').open = false;}", # Close the project accordion
inputs=[],
outputs=[]
)
# Launch the interface
iface.launch() |