File size: 16,989 Bytes
93a8bce 93f5629 4a03e59 93f5629 e88a32d 12cea06 1ea7edd d62865a d5a469d 4378fd8 b1387d5 e88a32d 93f5629 52ae10e b1387d5 52ae10e 93f5629 52ae10e fa24808 09e67fe 52ae10e 4a03e59 09e67fe 113bed9 09e67fe 113bed9 4a03e59 52ae10e 4a03e59 113bed9 4a03e59 1ea7edd 4a03e59 d5a469d 4a03e59 e88a32d 52ae10e 7820a52 bd23e86 7820a52 12cea06 a9d7990 52ae10e 2484926 52ae10e 1d42aa4 2484926 52ae10e 1d42aa4 2484926 52ae10e 2484926 52ae10e 2484926 52ae10e 2484926 52ae10e b1387d5 1d42aa4 2484926 b1387d5 1d42aa4 2484926 52ae10e 2484926 52ae10e a9d7990 1ea7edd 4a03e59 113bed9 1ea7edd 113bed9 2484926 113bed9 2484926 4a03e59 113bed9 4a03e59 1d42aa4 2484926 4a03e59 1d42aa4 2484926 4a03e59 2484926 4a03e59 1ea7edd 4a03e59 113bed9 1ea7edd 113bed9 2484926 113bed9 2484926 268b7e1 4a03e59 113bed9 4a03e59 1d42aa4 2484926 4a03e59 1d42aa4 2484926 4a03e59 2484926 4a03e59 bd23e86 d5a469d 2484926 a768b6b 2484926 a768b6b bd23e86 2484926 d5a469d edf85c0 52ae10e 1d42aa4 d5a469d 52ae10e 2484926 52ae10e 4378fd8 77f3a53 2484926 4378fd8 f5d6264 4378fd8 f5d6264 30cd7dd 4378fd8 f5d6264 30cd7dd 4378fd8 f5d6264 30cd7dd 4378fd8 f5d6264 30cd7dd 4378fd8 f5d6264 30cd7dd 4378fd8 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 77f3a53 3cb2f30 4378fd8 a9d7990 4439436 2484926 4439436 2484926 4439436 bd23e86 4439436 a768b6b e88a32d 8a3f635 4439436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
from utils.goat import call_inference
import io
import warnings
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path, device=device)
# Load additional models
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
# Define class names for all models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image']
labels_3 = ['AI', 'Real']
labels_4 = ['AI', 'Real']
def softmax(vector):
e = np.exp(vector - np.max(vector)) # for numerical stability
return e / e.sum()
def convert_pil_to_bytes(image, format='JPEG'):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format=format)
img_byte_arr = img_byte_arr.getvalue()
return img_byte_arr
@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
# Ensure the image is a PIL Image
if not isinstance(img, Image.Image):
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
# Convert the image to RGB if not already
if img.mode != 'RGB':
img_pil = img.convert('RGB')
else:
img_pil = img
# Resize the image
img_pil = transforms.Resize((256, 256))(img_pil)
# Predict using the first model
try:
prediction_1 = clf_1(img_pil)
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
result_1output = [1, result_1['real'], result_1['artificial']]
print(result_1output)
# Ensure the result dictionary contains all class names
for class_name in class_names_1:
if class_name not in result_1:
result_1[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_1['artificial'] >= confidence_threshold:
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
result_1output += ['AI']
elif result_1['real'] >= confidence_threshold:
label_1 = f"Real, Confidence: {result_1['real']:.4f}"
result_1output += ['REAL']
else:
label_1 = "Uncertain Classification"
result_1output += ['UNCERTAIN']
except Exception as e:
label_1 = f"Error: {str(e)}"
print(result_1output)
# Predict using the second model
try:
prediction_2 = clf_2(img_pil)
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
result_2output = [2, result_2['Real Image'], result_2['AI Image']]
print(result_2output)
# Ensure the result dictionary contains all class names
for class_name in class_names_2:
if class_name not in result_2:
result_2[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_2['AI Image'] >= confidence_threshold:
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
result_2output += ['AI']
elif result_2['Real Image'] >= confidence_threshold:
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
result_2output += ['REAL']
else:
label_2 = "Uncertain Classification"
result_2output += ['UNCERTAIN']
except Exception as e:
label_2 = f"Error: {str(e)}"
# Predict using the third model with softmax
try:
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs_3 = model_3(**inputs_3)
logits_3 = outputs_3.logits
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
result_3 = {
labels_3[1]: float(probabilities_3[1]), # Real
labels_3[0]: float(probabilities_3[0]) # AI
}
result_3output = [3, float(probabilities_3[1]), float(probabilities_3[0])]
print(result_3output)
# Ensure the result dictionary contains all class names
for class_name in labels_3:
if class_name not in result_3:
result_3[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_3['AI'] >= confidence_threshold:
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
result_3output += ['AI']
elif result_3['Real'] >= confidence_threshold:
label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
result_3output += ['REAL']
else:
label_3 = "Uncertain Classification"
result_3output += ['UNCERTAIN']
except Exception as e:
label_3 = f"Error: {str(e)}"
# Predict using the fourth model with softmax
try:
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
with torch.no_grad():
outputs_4 = model_4(**inputs_4)
logits_4 = outputs_4.logits
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
result_4 = {
labels_4[1]: float(probabilities_4[1]), # Real
labels_4[0]: float(probabilities_4[0]) # AI
}
result_4output = [4, float(probabilities_4[1]), float(probabilities_4[0])]
print(result_4)
# Ensure the result dictionary contains all class names
for class_name in labels_4:
if class_name not in result_4:
result_4[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_4['AI'] >= confidence_threshold:
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
result_4output += ['AI']
elif result_4['Real'] >= confidence_threshold:
label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
result_4output += ['REAL']
else:
label_4 = "Uncertain Classification"
result_4output += ['UNCERTAIN']
except Exception as e:
label_4 = f"Error: {str(e)}"
try:
result_5output = [5, 0.0, 0.0, 'MAINTENANCE']
img_bytes = convert_pil_to_bytes(img_pil)
# print(img)
# print(img_bytes)
response5_raw = call_inference(img)
print(response5_raw)
response5 = response5_raw
print(response5)
label_5 = f"Result: {response5}"
except Exception as e:
label_5 = f"Error: {str(e)}"
# Combine results
combined_results = {
"SwinV2/detect": label_1,
"ViT/AI-vs-Real": label_2,
"Swin/SDXL": label_3,
"Swin/SDXL-FLUX": label_4,
"GOAT": label_5
}
combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output ]
return img_pil, combined_outputs
# Define a function to generate the HTML content
def generate_results_html(results):
def get_header_color(label):
if label == 'AI':
return 'bg-danger'
elif label == 'REAL':
return 'bg-success'
elif label == 'UNCERTAIN':
return 'bg-warning'
elif label == 'MAINTENANCE':
return 'bg-info'
else:
return 'bg-secondary'
print(results)
html_content = f"""
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet">
<div class="container">
<div class="row mt-4 px-2">
<div class="col">
<h5>SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
<p>{results[0][3]}</p>
</div>
<div class="col">
<h5>ViT/AI-vs-Real <span class="badge badge-secondary ml-1">M2</span></h5>
<p>{results[1][3]}</p>
</div>
<div class="col">
<h5>Swin/SDXL <span class="badge badge-secondary ml-1">M3</span></h5>
<p>{results[2][3]}</p>
</div>
<div class="col">
<h5>Swin/SDXL-FLUX <span class="badge badge-secondary ml-1">M4</span></h5>
<p>{results[3][3]}</p>
</div>
<div class="col">
<h5>GOAT <span class="badge badge-secondary ml-1">M5</span></h5>
<p>{results[4][3]}</p>
</div>
</div>
<div class="col">
<div class="card-group">
<div class="card">
<div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
<span class="text-center font-weight-bolder">{results[0][-1]}</span>
</div>
<div class="card-body">
<h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
<div class="progress">
<div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
</div>
<div class="progress">
<div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
</div>
</div>
<div class="card-footer">
<small class="text-muted">model by @haywoodsloan / more info</small>
</div>
</div>
<div class="card">
<div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
<span class="text-center font-weight-bolder">{results[0][-1]}</span>
</div>
<div class="card-body">
<h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
<div class="progress">
<div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
</div>
<div class="progress">
<div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
</div>
</div>
<div class="card-footer">
<small class="text-muted">model by @haywoodsloan / more info</small>
</div>
</div>
<div class="card">
<div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
<span class="text-center font-weight-bolder">{results[0][-1]}</span>
</div>
<div class="card-body">
<h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
<div class="progress">
<div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
</div>
<div class="progress">
<div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
</div>
</div>
<div class="card-footer">
<small class="text-muted">model by @haywoodsloan / more info</small>
</div>
</div>
<div class="card">
<div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
<span class="text-center font-weight-bolder">{results[0][-1]}</span>
</div>
<div class="card-body">
<h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
<div class="progress">
<div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
</div>
<div class="progress">
<div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
</div>
</div>
<div class="card-footer">
<small class="text-muted">model by @haywoodsloan / more info</small>
</div>
</div>
<div class="card">
<div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
<span class="text-center font-weight-bolder">{results[0][-1]}</span>
</div>
<div class="card-body">
<h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
<div class="progress">
<div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
</div>
<div class="progress">
<div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
</div>
</div>
<div class="card-footer">
<small class="text-muted">model by @haywoodsloan / more info</small>
</div>
</div>
</div>
</div>
</div>
"""
return html_content
# Modify the predict_image function to return the HTML content
def predict_image_with_html(img, confidence_threshold):
img_pil, results = predict_image(img, confidence_threshold)
html_content = generate_results_html(results)
return img_pil, html_content
# Define the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# AI Generated Image Classification")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
inputs = [image_input, confidence_slider]
with gr.Column(scale=3):
image_output = gr.Image(label="Processed Image")
# Custom HTML component to display results in 5 columns
results_html = gr.HTML(label="Model Predictions")
outputs = [image_output, results_html]
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
# Launch the interface
iface.launch() |