File size: 16,989 Bytes
93a8bce
93f5629
4a03e59
93f5629
e88a32d
12cea06
1ea7edd
d62865a
d5a469d
4378fd8
 
 
 
b1387d5
e88a32d
 
93f5629
52ae10e
b1387d5
52ae10e
 
 
93f5629
52ae10e
fa24808
09e67fe
52ae10e
4a03e59
 
09e67fe
113bed9
09e67fe
113bed9
4a03e59
 
52ae10e
4a03e59
113bed9
 
4a03e59
 
1ea7edd
4a03e59
d5a469d
 
 
 
 
 
 
4a03e59
e88a32d
52ae10e
7820a52
 
 
 
 
 
 
 
bd23e86
7820a52
12cea06
a9d7990
52ae10e
 
 
 
2484926
 
52ae10e
 
 
 
 
 
1d42aa4
2484926
52ae10e
1d42aa4
2484926
52ae10e
 
2484926
 
52ae10e
 
2484926
52ae10e
 
 
 
2484926
 
52ae10e
 
 
 
 
b1387d5
1d42aa4
2484926
b1387d5
1d42aa4
2484926
52ae10e
 
2484926
52ae10e
 
a9d7990
1ea7edd
4a03e59
113bed9
1ea7edd
113bed9
 
 
 
2484926
 
113bed9
2484926
 
4a03e59
113bed9
4a03e59
 
 
 
1d42aa4
2484926
4a03e59
1d42aa4
2484926
4a03e59
 
2484926
4a03e59
 
 
1ea7edd
4a03e59
113bed9
1ea7edd
113bed9
 
 
 
2484926
 
113bed9
2484926
268b7e1
4a03e59
113bed9
4a03e59
 
 
 
1d42aa4
2484926
4a03e59
1d42aa4
2484926
4a03e59
 
2484926
4a03e59
 
bd23e86
d5a469d
2484926
a768b6b
2484926
 
 
 
 
a768b6b
bd23e86
2484926
d5a469d
 
edf85c0
52ae10e
 
1d42aa4
 
 
 
d5a469d
52ae10e
2484926
 
52ae10e
4378fd8
 
77f3a53
 
 
 
 
 
 
 
 
 
 
2484926
4378fd8
 
 
f5d6264
4378fd8
f5d6264
30cd7dd
4378fd8
 
f5d6264
30cd7dd
4378fd8
 
f5d6264
30cd7dd
4378fd8
 
f5d6264
30cd7dd
4378fd8
 
f5d6264
30cd7dd
4378fd8
 
3cb2f30
 
 
77f3a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb2f30
77f3a53
 
 
 
 
 
 
 
3cb2f30
 
77f3a53
3cb2f30
 
 
77f3a53
 
 
3cb2f30
77f3a53
 
 
 
 
 
 
 
3cb2f30
 
77f3a53
3cb2f30
 
 
77f3a53
 
 
3cb2f30
77f3a53
 
 
 
 
 
 
 
3cb2f30
 
77f3a53
3cb2f30
 
 
 
4378fd8
 
 
 
 
 
 
 
 
 
a9d7990
4439436
 
 
 
2484926
4439436
 
 
2484926
4439436
bd23e86
 
 
4439436
a768b6b
e88a32d
8a3f635
4439436
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
from utils.goat import call_inference
import io
import warnings

# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")

# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)

# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path, device=device)

# Load additional models
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)

# Define class names for all models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image']
labels_3 = ['AI', 'Real']
labels_4 = ['AI', 'Real']

def softmax(vector):
    e = np.exp(vector - np.max(vector))  # for numerical stability
    return e / e.sum()

def convert_pil_to_bytes(image, format='JPEG'):
    img_byte_arr = io.BytesIO()
    image.save(img_byte_arr, format=format)
    img_byte_arr = img_byte_arr.getvalue()
    return img_byte_arr

@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
    # Ensure the image is a PIL Image
    if not isinstance(img, Image.Image):
        raise ValueError(f"Expected a PIL Image, but got {type(img)}")
    
    # Convert the image to RGB if not already
    if img.mode != 'RGB':
        img_pil = img.convert('RGB')
    else:
        img_pil = img

    # Resize the image
    img_pil = transforms.Resize((256, 256))(img_pil)
    
    # Predict using the first model
    try:
        prediction_1 = clf_1(img_pil)
        result_1 = {pred['label']: pred['score'] for pred in prediction_1}
        result_1output = [1, result_1['real'], result_1['artificial']]
        print(result_1output)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_1:
            if class_name not in result_1:
                result_1[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_1['artificial'] >= confidence_threshold:
            label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
            result_1output += ['AI']
        elif result_1['real'] >= confidence_threshold:
            label_1 = f"Real, Confidence: {result_1['real']:.4f}"
            result_1output += ['REAL']
        else:
            label_1 = "Uncertain Classification"
            result_1output += ['UNCERTAIN']

    except Exception as e:
        label_1 = f"Error: {str(e)}"
    print(result_1output)
    # Predict using the second model
    try:
        prediction_2 = clf_2(img_pil)
        result_2 = {pred['label']: pred['score'] for pred in prediction_2}
        result_2output = [2, result_2['Real Image'], result_2['AI Image']]
        print(result_2output)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_2:
            if class_name not in result_2:
                result_2[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_2['AI Image'] >= confidence_threshold:
            label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
            result_2output += ['AI']
        elif result_2['Real Image'] >= confidence_threshold:
            label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
            result_2output += ['REAL']
        else:
            label_2 = "Uncertain Classification"
            result_2output += ['UNCERTAIN']
    except Exception as e:
        label_2 = f"Error: {str(e)}"
    
    # Predict using the third model with softmax
    try:
        inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs_3 = model_3(**inputs_3)
            logits_3 = outputs_3.logits
            probabilities_3 = softmax(logits_3.cpu().numpy()[0])
        result_3 = {
            labels_3[1]: float(probabilities_3[1]),   # Real
            labels_3[0]: float(probabilities_3[0])  # AI
        }
        result_3output = [3, float(probabilities_3[1]), float(probabilities_3[0])]
        print(result_3output)
        # Ensure the result dictionary contains all class names
        for class_name in labels_3:
            if class_name not in result_3:
                result_3[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_3['AI'] >= confidence_threshold:
            label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
            result_3output += ['AI']
        elif result_3['Real'] >= confidence_threshold:
            label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
            result_3output += ['REAL']
        else:
            label_3 = "Uncertain Classification"
            result_3output += ['UNCERTAIN']
    except Exception as e:
        label_3 = f"Error: {str(e)}"
    
    # Predict using the fourth model with softmax
    try:
        inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs_4 = model_4(**inputs_4)
            logits_4 = outputs_4.logits
            probabilities_4 = softmax(logits_4.cpu().numpy()[0])
        result_4 = {
            labels_4[1]: float(probabilities_4[1]),   # Real
            labels_4[0]: float(probabilities_4[0])  # AI
        }
        result_4output = [4, float(probabilities_4[1]), float(probabilities_4[0])]
        print(result_4)
        # Ensure the result dictionary contains all class names
        for class_name in labels_4:
            if class_name not in result_4:
                result_4[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_4['AI'] >= confidence_threshold:
            label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
            result_4output += ['AI']
        elif result_4['Real'] >= confidence_threshold:
            label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
            result_4output += ['REAL']
        else:
            label_4 = "Uncertain Classification"
            result_4output += ['UNCERTAIN']
    except Exception as e:
        label_4 = f"Error: {str(e)}"
    
    try:
        result_5output = [5, 0.0, 0.0, 'MAINTENANCE']
        img_bytes = convert_pil_to_bytes(img_pil)
        # print(img)
        # print(img_bytes)
        response5_raw = call_inference(img)
        print(response5_raw)
        response5 = response5_raw
        print(response5)
        label_5 = f"Result: {response5}"
        
    except Exception as e:
        label_5 = f"Error: {str(e)}"
    
    # Combine results
    combined_results = {
        "SwinV2/detect": label_1,
        "ViT/AI-vs-Real": label_2,
        "Swin/SDXL": label_3,
        "Swin/SDXL-FLUX": label_4,
        "GOAT": label_5
    }
    combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output ]
    return img_pil, combined_outputs

# Define a function to generate the HTML content
def generate_results_html(results):
    def get_header_color(label):
        if label == 'AI':
            return 'bg-danger'
        elif label == 'REAL':
            return 'bg-success'
        elif label == 'UNCERTAIN':
            return 'bg-warning'
        elif label == 'MAINTENANCE':
            return 'bg-info'
        else:
            return 'bg-secondary'
    print(results)
    html_content = f"""
    <link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet">
    <div class="container">
        <div class="row mt-4 px-2">
            <div class="col">
                <h5>SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
                <p>{results[0][3]}</p>
            </div>
            <div class="col">
                <h5>ViT/AI-vs-Real <span class="badge badge-secondary ml-1">M2</span></h5>
                <p>{results[1][3]}</p>
            </div>
            <div class="col">
                <h5>Swin/SDXL <span class="badge badge-secondary ml-1">M3</span></h5>
                <p>{results[2][3]}</p>
            </div>
            <div class="col">
                <h5>Swin/SDXL-FLUX <span class="badge badge-secondary ml-1">M4</span></h5>
                <p>{results[3][3]}</p>
            </div>
            <div class="col">
                <h5>GOAT <span class="badge badge-secondary ml-1">M5</span></h5>
                <p>{results[4][3]}</p>
            </div>
        </div>
        <div class="col">
            <div class="card-group">
                <div class="card">
                    <div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
                    <span class="text-center font-weight-bolder">{results[0][-1]}</span>
                    </div>
                    <div class="card-body">
                    <h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
                    
                    <div class="progress">
                        <div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
                    </div>
                    <div class="progress">
                        <div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
                    </div>
                    </div>
                    <div class="card-footer">
                    <small class="text-muted">model by @haywoodsloan / more info</small>
                    </div>
                </div>
                <div class="card">
                    <div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
                    <span class="text-center font-weight-bolder">{results[0][-1]}</span>
                    </div>
                    <div class="card-body">
                    <h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
                    
                    <div class="progress">
                        <div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
                    </div>
                    <div class="progress">
                        <div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
                    </div>
                    </div>
                    <div class="card-footer">
                    <small class="text-muted">model by @haywoodsloan / more info</small>
                    </div>
                </div>
                <div class="card">
                    <div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
                    <span class="text-center font-weight-bolder">{results[0][-1]}</span>
                    </div>
                    <div class="card-body">
                    <h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
                    
                    <div class="progress">
                        <div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
                    </div>
                    <div class="progress">
                        <div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
                    </div>
                    </div>
                    <div class="card-footer">
                    <small class="text-muted">model by @haywoodsloan / more info</small>
                    </div>
                </div>
                <div class="card">
                    <div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
                    <span class="text-center font-weight-bolder">{results[0][-1]}</span>
                    </div>
                    <div class="card-body">
                    <h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
                    
                    <div class="progress">
                        <div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
                    </div>
                    <div class="progress">
                        <div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
                    </div>
                    </div>
                    <div class="card-footer">
                    <small class="text-muted">model by @haywoodsloan / more info</small>
                    </div>
                </div>
                <div class="card">
                    <div class="card-header {get_header_color(results[0][-1])}" style="height:120px;">
                    <span class="text-center font-weight-bolder">{results[0][-1]}</span>
                    </div>
                    <div class="card-body">
                    <h5 class="card-title">SwinV2/detect <span class="badge badge-secondary ml-1">M1</span></h5>
                    
                    <div class="progress">
                        <div class="progress-bar" role="progressbar" style="width: {results[0][-3] * 100:.2f}%;" aria-valuenow="{results[0][-3] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-3] * 100:.2f}% (Real)</div>
                    </div>
                    <div class="progress">
                        <div class="progress-bar bg-danger" role="progressbar" style="width: {results[0][-4] * 100:.2f}%;" aria-valuenow="{results[0][-4] * 100:.2f}" aria-valuemin="0" aria-valuemax="100">{results[0][-4] * 100:.2f}% (AI)</div>
                    </div>
                    </div>
                    <div class="card-footer">
                    <small class="text-muted">model by @haywoodsloan / more info</small>
                    </div>
                </div>
            </div>
        </div>
    </div>
    """
    return html_content

# Modify the predict_image function to return the HTML content
def predict_image_with_html(img, confidence_threshold):
    img_pil, results = predict_image(img, confidence_threshold)
    html_content = generate_results_html(results)
    return img_pil, html_content

# Define the Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# AI Generated Image Classification")
    
    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
            confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
            inputs = [image_input, confidence_slider]
        with gr.Column(scale=3):
            image_output = gr.Image(label="Processed Image")
            # Custom HTML component to display results in 5 columns
            results_html = gr.HTML(label="Model Predictions")
            outputs = [image_output, results_html]
    
    gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)

# Launch the interface
iface.launch()