File size: 29,790 Bytes
93a8bce
93f5629
4a03e59
93f5629
e88a32d
12cea06
1ea7edd
2669b96
d5a469d
4378fd8
 
 
 
b1387d5
e88a32d
 
93f5629
52ae10e
b1387d5
52ae10e
 
 
93f5629
52ae10e
fa24808
09e67fe
52ae10e
4a03e59
 
09e67fe
113bed9
09e67fe
113bed9
4a03e59
d9b67e8
 
 
 
4a03e59
52ae10e
4a03e59
113bed9
 
d9b67e8
4a03e59
 
1ea7edd
4a03e59
d5a469d
8ef48b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a469d
 
 
 
 
 
4a03e59
e88a32d
52ae10e
7820a52
 
 
 
 
 
 
 
bd23e86
7820a52
12cea06
d9b67e8
f0208ec
a9d7990
52ae10e
 
 
 
b29bd8c
2484926
52ae10e
 
 
 
 
 
1d42aa4
2484926
52ae10e
1d42aa4
2484926
52ae10e
 
2484926
 
52ae10e
 
2484926
52ae10e
 
d9b67e8
52ae10e
b29bd8c
2484926
52ae10e
 
 
 
 
b1387d5
1d42aa4
2484926
b1387d5
1d42aa4
2484926
52ae10e
 
2484926
52ae10e
 
a9d7990
1ea7edd
4a03e59
113bed9
1ea7edd
113bed9
 
 
 
2484926
 
113bed9
b29bd8c
2484926
4a03e59
113bed9
4a03e59
 
 
 
1d42aa4
2484926
4a03e59
1d42aa4
2484926
4a03e59
 
2484926
4a03e59
 
 
1ea7edd
4a03e59
113bed9
1ea7edd
113bed9
 
 
 
2484926
 
113bed9
b29bd8c
268b7e1
4a03e59
113bed9
4a03e59
 
 
 
1d42aa4
2484926
4a03e59
1d42aa4
2484926
4a03e59
 
2484926
4a03e59
 
bd23e86
d5a469d
d9b67e8
24e07c9
d9b67e8
24e07c9
d9b67e8
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a469d
 
edf85c0
d9b67e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7513f66
52ae10e
 
1d42aa4
 
 
 
d9b67e8
52ae10e
8ef48b9
 
2484926
7513f66
8ef48b9
7513f66
52ae10e
b29bd8c
4378fd8
 
77f3a53
 
30c764e
77f3a53
30c764e
77f3a53
b29bd8c
77f3a53
30c764e
77f3a53
30c764e
dd0760e
b29bd8c
4378fd8
28af384
3bc1c8a
 
cd4052c
7c1f022
1835e62
b29bd8c
 
8ef48b9
b29bd8c
06126f5
 
b29bd8c
8ef48b9
b29bd8c
a26ccca
b29bd8c
 
 
 
77f3a53
b29bd8c
9bdd986
 
e60282c
 
dd0760e
b29bd8c
 
 
77f3a53
06126f5
9bdd986
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
77f3a53
 
b29bd8c
 
8ef48b9
b29bd8c
8ef48b9
d9b67e8
3cb2f30
b29bd8c
 
 
8ef48b9
b29bd8c
 
a26ccca
b29bd8c
8ef48b9
b29bd8c
a26ccca
b29bd8c
 
 
 
 
 
9bdd986
 
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
77f3a53
30c764e
9bdd986
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
77f3a53
b29bd8c
 
 
8ef48b9
dd0760e
8ef48b9
d9b67e8
b29bd8c
 
 
 
8ef48b9
b29bd8c
 
a26ccca
b29bd8c
8ef48b9
b29bd8c
a26ccca
b29bd8c
 
 
 
 
 
9bdd986
 
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
3cb2f30
a26ccca
9bdd986
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
3cb2f30
 
b29bd8c
d9b67e8
8ef48b9
dd0760e
8ef48b9
d9b67e8
b29bd8c
 
 
 
8ef48b9
b29bd8c
 
06126f5
b29bd8c
8ef48b9
b29bd8c
a26ccca
b29bd8c
 
 
 
 
 
9bdd986
 
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
77f3a53
a26ccca
9bdd986
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
77f3a53
b29bd8c
 
d9b67e8
8ef48b9
dd0760e
8ef48b9
d9b67e8
b29bd8c
 
407a629
b29bd8c
8ef48b9
b29bd8c
 
407a629
b29bd8c
8ef48b9
b29bd8c
a26ccca
b29bd8c
 
407a629
b29bd8c
 
 
9bdd986
 
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
3cb2f30
a26ccca
9bdd986
e60282c
b29bd8c
dd0760e
b29bd8c
 
 
3cb2f30
 
b29bd8c
d9b67e8
8ef48b9
dd0760e
8ef48b9
d9b67e8
b29bd8c
3cb2f30
 
4378fd8
 
 
 
 
 
 
 
 
 
a9d7990
4439436
2669b96
4439436
 
b29bd8c
4439436
3933565
f0208ec
4439436
b29bd8c
3933565
f0208ec
30c764e
bd23e86
 
 
4439436
407a629
 
 
 
 
 
 
 
 
 
9e875de
407a629
 
 
e88a32d
8a3f635
4439436
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
# from utils.goat import call_inference / announcement soon
import io
import warnings

# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")

# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)

# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path, device=device)

# Load additional models
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)

# Load the second model
model_5_path = "prithivMLmods/Deep-Fake-Detector-v2-Model"
clf_5 = pipeline("image-classification", model=model_5_path, device=device)

# Define class names for all models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image']
labels_3 = ['AI', 'Real']
labels_4 = ['AI', 'Real']
class_names_5 = ['Realism', 'Deepfake']

def softmax(vector):
    e = np.exp(vector - np.max(vector))  # for numerical stability
    return e / e.sum()

def augment_image(img_pil):
    # Example augmentation: horizontal flip
    transform_flip = transforms.Compose([
        transforms.RandomHorizontalFlip(p=1.0)  # Flip the image horizontally with probability 1.0
    ])
    
    # Example augmentation: rotation
    transform_rotate = transforms.Compose([
        transforms.RandomRotation(degrees=(90, 90))  # Rotate the image by 90 degrees
    ])
    
    augmented_img_flip = transform_flip(img_pil)
    augmented_img_rotate = transform_rotate(img_pil)
    
    return augmented_img_flip, augmented_img_rotate

# def convert_pil_to_bytes(img_pil):
#     img_byte_arr = io.BytesIO()
#     img_pil.save(img_byte_arr, format='PNG')
#     img_byte_arr = img_byte_arr.getvalue()
#     return img_byte_arr

def convert_pil_to_bytes(image, format='JPEG'):
    img_byte_arr = io.BytesIO()
    image.save(img_byte_arr, format=format)
    img_byte_arr = img_byte_arr.getvalue()
    return img_byte_arr

@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
    # Ensure the image is a PIL Image
    if not isinstance(img, Image.Image):
        raise ValueError(f"Expected a PIL Image, but got {type(img)}")
    
    # Convert the image to RGB if not already
    if img.mode != 'RGB':
        img_pil = img.convert('RGB')
    else:
        img_pil = img

    # Resize the image
    img_pil = transforms.Resize((256, 256))(img_pil)
    # Size 224 for vits models
    img_pilvits = transforms.Resize((224, 224))(img_pil)
    
    # Predict using the first model
    try:
        prediction_1 = clf_1(img_pil)
        result_1 = {pred['label']: pred['score'] for pred in prediction_1}
        result_1output = [1, 'SwinV2-base', result_1['real'], result_1['artificial']]
        print(result_1output)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_1:
            if class_name not in result_1:
                result_1[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_1['artificial'] >= confidence_threshold:
            label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
            result_1output += ['AI']
        elif result_1['real'] >= confidence_threshold:
            label_1 = f"Real, Confidence: {result_1['real']:.4f}"
            result_1output += ['REAL']
        else:
            label_1 = "Uncertain Classification"
            result_1output += ['UNCERTAIN']

    except Exception as e:
        label_1 = f"Error: {str(e)}"
    print(result_1output)
    # Predict using the second model
    try:
        prediction_2 = clf_2(img_pilvits)
        result_2 = {pred['label']: pred['score'] for pred in prediction_2}
        result_2output = [2, 'ViT-base Classifer', result_2['Real Image'], result_2['AI Image']]
        print(result_2output)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_2:
            if class_name not in result_2:
                result_2[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_2['AI Image'] >= confidence_threshold:
            label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
            result_2output += ['AI']
        elif result_2['Real Image'] >= confidence_threshold:
            label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
            result_2output += ['REAL']
        else:
            label_2 = "Uncertain Classification"
            result_2output += ['UNCERTAIN']
    except Exception as e:
        label_2 = f"Error: {str(e)}"
    
    # Predict using the third model with softmax
    try:
        inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs_3 = model_3(**inputs_3)
            logits_3 = outputs_3.logits
            probabilities_3 = softmax(logits_3.cpu().numpy()[0])
        result_3 = {
            labels_3[1]: float(probabilities_3[1]),   # Real
            labels_3[0]: float(probabilities_3[0])  # AI
        }
        result_3output = [3, 'SDXL-Trained', float(probabilities_3[1]), float(probabilities_3[0])]
        print(result_3output)
        # Ensure the result dictionary contains all class names
        for class_name in labels_3:
            if class_name not in result_3:
                result_3[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_3['AI'] >= confidence_threshold:
            label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
            result_3output += ['AI']
        elif result_3['Real'] >= confidence_threshold:
            label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
            result_3output += ['REAL']
        else:
            label_3 = "Uncertain Classification"
            result_3output += ['UNCERTAIN']
    except Exception as e:
        label_3 = f"Error: {str(e)}"
    
    # Predict using the fourth model with softmax
    try:
        inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs_4 = model_4(**inputs_4)
            logits_4 = outputs_4.logits
            probabilities_4 = softmax(logits_4.cpu().numpy()[0])
        result_4 = {
            labels_4[1]: float(probabilities_4[1]),   # Real
            labels_4[0]: float(probabilities_4[0])  # AI
        }
        result_4output = [4, 'SDXL + FLUX', float(probabilities_4[1]), float(probabilities_4[0])]
        print(result_4)
        # Ensure the result dictionary contains all class names
        for class_name in labels_4:
            if class_name not in result_4:
                result_4[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_4['AI'] >= confidence_threshold:
            label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
            result_4output += ['AI']
        elif result_4['Real'] >= confidence_threshold:
            label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
            result_4output += ['REAL']
        else:
            label_4 = "Uncertain Classification"
            result_4output += ['UNCERTAIN']
    except Exception as e:
        label_4 = f"Error: {str(e)}"
    
    try:
        prediction_5 = clf_5(img_pilvits)
        result_5 = {pred['label']: pred['score'] for pred in prediction_5}
        result_5output = [5, 'ViT-base Newcomer', result_5['Realism'], result_5['Deepfake']]
        print(result_5output)
        # Ensure the result dictionary contains all class names
        for class_name in class_names_5:
            if class_name not in result_5:
                result_5[class_name] = 0.0
        # Check if either class meets the confidence threshold
        if result_5['AI Image'] >= confidence_threshold:
            label_5 = f"AI, Confidence: {result_5['Deepfake']:.4f}"
            result_5output += ['AI']
        elif result_5['Real Image'] >= confidence_threshold:
            label_5 = f"Real, Confidence: {result_5['Realism']:.4f}"
            result_5output += ['REAL']
        else:
            label_5 = "Uncertain Classification"
            result_5output += ['UNCERTAIN']
    except Exception as e:
        label_5 = f"Error: {str(e)}"
    
    
    # try:
    #     result_5output = [5, 'TBA', 0.0, 0.0, 'MAINTENANCE']
    #     img_bytes = convert_pil_to_bytes(img_pil)
    #     # print(img)
    #     # print(img_bytes)
    #     response5_raw = call_inference(img)
    #     print(response5_raw)
    #     response5 = response5_raw
    #     print(response5)
    #     label_5 = f"Result: {response5}"
        
    # except Exception as e:
    #     label_5 = f"Error: {str(e)}"
    

    # Combine results
    combined_results = {
        "SwinV2/detect": label_1,
        "ViT/AI-vs-Real": label_2,
        "Swin/SDXL": label_3,
        "Swin/SDXL-FLUX": label_4,
        "prithivMLmods": label_5
    }
        # Generate HTML content
    
    combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output ]
    # html_content = generate_results_html(combined_outputs)

    return img_pil, combined_outputs

# Define a function to generate the HTML content
# Define a function to generate the HTML content
def generate_results_html(results):
    def get_header_color(label):
        if label == 'AI':
            return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200'
        elif label == 'REAL':
            return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200'
        elif label == 'UNCERTAIN':
            return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200'
        elif label == 'MAINTENANCE':
            return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200'
        else:
            return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200'
        
    
    html_content = f"""
    

    <link href="https://unpkg.com/[email protected]/dist/tailwind.min.css" rel="stylesheet">
    
    <div class="container mx-auto">
        <div class="grid xl:grid-cols-5 md:grid-cols-5 grid-cols-1 gap-1">
            <!-- Tile 1: SwinV2/detect -->
            <div
                class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
                <div
                    class="-m-4 h-24 {get_header_color(results[0][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg">
                    <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 1:</span>
                    <span
                        class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[0][-1])[2]} px-1 py-0.5 {get_header_color(results[0][-1])[3]}"
                    >
                        <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                            {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[0][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                        </svg>
                        <p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[0][-1]}</p>
                    </span>
                </div>
                <div>
                    <div class="mt-4 relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[0][2] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[0][2]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                    <div class="relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[0][3] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[0][3]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                </div>
                <div class="flex flex-col items-start">
                    <h4 class="mt-4 text-sm font-semibold tracking-wide">SwinV2 Based</h4>
                    
                    <div class="text-xs font-mono">Real: {results[0][2]:.4f}, AI: {results[0][3]:.4f}</div>
                    
                    <a class="mt-2 text-xs tracking-wide">@haywoodsloan / more info</a>
                </div>
            </div>
            <!-- Tile 2: ViT/AI-vs-Real -->
            <div
                class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
                <div
                    class="-m-4 h-24 {get_header_color(results[1][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[1][-1])[4]}">
                    <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 2:</span>
                    <span
                        class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[1][-1])[2]} px-1 py-0.5 {get_header_color(results[1][-1])[3]}"
                    >
                        <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                            {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[1][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                        </svg>
                        <p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[1][-1]}</p>
                    </span>
                </div>
                <div>
                    <div class="mt-4 relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[1][2] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[1][2]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                    <div class="relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[1][3] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[1][3]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                </div>
                <div class="flex flex-col items-start">
                    <h4 class="mt-4 text-sm font-semibold tracking-wide">ViT Based</h4>
                    
                    <div class="text-xs font-mono">Real: {results[1][2]:.4f}, AI: {results[1][3]:.4f}</div>
                    
                    <a class="mt-2 text-xs tracking-wide">@Heem2 / more info</a>
                </div>
            </div>
            <!-- Tile 3: Swin/SDXL -->
            <div
                class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
                <div
                    class="-m-4 h-24 {get_header_color(results[2][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[2][-1])[4]}">
                    <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 3:</span>
                    <span
                        class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[2][-1])[2]} px-1 py-0.5 {get_header_color(results[2][-1])[3]}"
                    >
                        <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                            {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[2][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                        </svg>
                        <p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[2][-1]}</p>
                    </span>
                </div>
                <div>
                    <div class="mt-4 relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[2][2] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[2][2]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                    <div class="relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[2][3] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[2][3]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                </div>
                <div class="flex flex-col items-start">
                    <h4 class="mt-4 text-sm font-semibold tracking-wide">SDXL Dataset</h4>
                    
                    <div class="text-xs font-mono">Real: {results[2][2]:.4f}, AI: {results[2][3]:.4f}</div>
                    
                    <a class="mt-2 text-xs tracking-wide">@Organika / more info</a>
                </div>
            </div>
            <!-- Tile 4: Swin/SDXL-FLUX -->
            <div
                class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
                <div
                    class="-m-4 h-24 {get_header_color(results[3][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[3][-1])[4]}">
                    <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 4:</span>
                    <span
                        class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[3][-1])[2]} px-1 py-0.5 {get_header_color(results[3][-1])[3]}"
                    >
                        <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                            {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[3][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                        </svg>
                        <p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[3][-1]}</p>
                    </span>
                </div>
                <div>
                    <div class="mt-4 relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[3][2] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[3][2]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                    <div class="relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[3][3] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[3][3]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                </div>
                <div class="flex flex-col items-start">
                    <h4 class="mt-4 text-sm font-semibold tracking-wide">SDXL + FLUX</h4>
                    
                    <div class="text-xs font-mono">Real: {results[3][2]:.4f}, AI: {results[3][3]:.4f}</div>
                    
                    <a class="mt-2 text-xs tracking-wide">@cmckinle / more info</a>
                </div>
            </div>
            <!-- Tile 5: Newcomer -->
            <div
                class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
                <div
                    class="-m-4 h-24 {get_header_color(results[4][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[4][-1])[4]}">
                    <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 5: </span>
                    <span
                        class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[4][-1])[2]} px-1 py-0.5 {get_header_color(results[4][-1])[3]}"
                    >
                        <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                            {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[4][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                        </svg>
                        <p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[4][-1]}</p>
                    </span>
                </div>
                <div>
                    <div class="mt-4 relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {results[4][2] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[4][2]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                    <div class="relative -mx-4 bg-gray-800">
                        <div class="w-full bg-gray-400 rounded-none h-8">
                            <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {results[4][3] * 100:.2f}%;">
                                <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                    <span class="ml-1 font-medium font-mono">{results[4][3]:.4f}</span>
                                </p>
                            </div>
                        </div>
                    </div>
                </div>
                <div class="flex flex-col items-start">
                    <h4 class="mt-4 text-sm font-semibold tracking-wide">Vits Model</h4>
                    
                    <div class="text-xs font-mono">Real: {results[4][2]:.4f}, AI: {results[4][3]:.4f}</div>
                    
                    <a class="mt-2 text-xs tracking-wide">@prithivMLmods / more info</a>
                </div>
            </div>
        </div>
    </div>
    """
    return html_content

# Modify the predict_image function to return the HTML content
def predict_image_with_html(img, confidence_threshold):
    img_pil, results = predict_image(img, confidence_threshold)
    html_content = generate_results_html(results)
    return img_pil, html_content

# Define the Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# AI Generated Image / Deepfake Detection Models Evaluation")
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
            with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
                confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
            inputs = [image_input, confidence_slider]
        with gr.Column(scale=2):
            with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=True, elem_id="project_accordion"):
                gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
            image_output = gr.Image(label="Processed Image", visible=False)
            # Custom HTML component to display results in 5 columns
            results_html = gr.HTML(label="Model Predictions")
            outputs = [image_output, results_html]
    
    # gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
    
    predict_button = gr.Button("Predict")
    predict_button.click(
        fn=predict_image_with_html, 
        inputs=inputs, 
        outputs=outputs
    )
    predict_button.click(
        fn=None, 
        js="() => {document.getElementById('project_accordion').open = false;}",  # Close the project accordion
        inputs=[], 
        outputs=[]
    )

# Launch the interface
iface.launch()