File size: 19,323 Bytes
74c6c80
 
93a8bce
93f5629
f54d46f
bc6c323
f54d46f
b8128c0
93f5629
e88a32d
12cea06
1ea7edd
d5a469d
67f3560
d307493
67883c3
237292f
e0b4991
67f3560
 
 
 
 
4378fd8
b1387d5
e88a32d
 
93f5629
cdf4146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f5629
cdf4146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98ae1c
 
cdf4146
67f3560
 
 
 
 
 
 
76cdea1
a7d5234
 
67f3560
52ae10e
67f3560
 
 
 
 
 
76cdea1
 
a7d5234
76cdea1
67f3560
ef48259
67f3560
 
 
 
 
 
d9b67e8
67f3560
387e421
67f3560
 
4a03e59
67f3560
 
d5a469d
67f3560
 
8ef48b9
b8128c0
 
 
36487f1
a7d5234
 
 
8ef48b9
a7d5234
 
 
67f3560
 
57b2083
67f3560
57b2083
 
 
 
 
 
 
 
 
 
 
67f3560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c65deae
67f3560
d5a469d
4a03e59
e88a32d
7820a52
 
 
 
 
 
12cea06
f0208ec
2484926
67f3560
b6b6807
57b2083
 
67f3560
 
b8128c0
a7d5234
7513f66
52ae10e
1d42aa4
 
 
 
387e421
76cdea1
a7d5234
 
52ae10e
d0dfcb4
8ef48b9
a7d5234
7513f66
4378fd8
d789973
4378fd8
77f3a53
 
30c764e
77f3a53
30c764e
77f3a53
b29bd8c
77f3a53
30c764e
77f3a53
30c764e
3bc1c8a
179d07c
d789973
 
 
 
 
 
 
b29bd8c
d789973
 
 
a7d5234
d789973
 
 
 
ad7a063
d789973
b29bd8c
d789973
 
 
 
 
 
 
b29bd8c
3cb2f30
 
d789973
 
 
 
 
 
b29bd8c
77f3a53
b29bd8c
 
d789973
 
 
4fec5e8
73a7730
4fec5e8
3cb2f30
 
d789973
 
 
 
 
4fec5e8
179d07c
 
 
 
 
 
a7d5234
 
d789973
4378fd8
 
 
179d07c
64eb1c4
6878826
 
 
1a8be6b
 
 
322ab55
 
 
 
67883c3
64eb1c4
67883c3
39fbd8c
64eb1c4
17ebb8f
64eb1c4
4378fd8
39fbd8c
5ccc3f6
11b7fe8
2d3dc2a
 
bc6c323
 
9b0be11
bc6c323
 
5dfc507
bc6c323
6cdbb16
4237d8f
2d3dc2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de43a0
7e0de27
5befadb
2d3dc2a
0aaa81c
0cae6be
e88a32d
8a3f635
4439436
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
from typing import Literal
import spaces
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
import io
import logging
from utils.utils import softmax, augment_image, convert_pil_to_bytes
from utils.gradient import gradient_processing
from utils.minmax import preprocess as minmax_preprocess
from utils.ela import genELA as ELA


# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

header_style = {
    "textAlign": 'center',
    "color": '#fff',
    "height": 64,
    "paddingInline": 48,
    "lineHeight": '64px',
    "backgroundColor": '#4096ff',
}

content_style = {
    "textAlign": 'center',
    "minHeight": 120,
    "lineHeight": '120px',
    "color": '#fff',
    "backgroundColor": '#0958d9',
}

sider_style = {
    "textAlign": 'center',
    "lineHeight": '120px',
    "color": '#fff',
    "backgroundColor": '#1677ff',
}

footer_style = {
    "textAlign": 'center',
    "color": '#fff',
    "backgroundColor": '#4096ff',
}

layout_style = {
    "borderRadius": 8,
    "overflow": 'hidden',
    "width": 'calc(100% - 8px)',
    "maxWidth": 'calc(100% - 8px)',
}
# Model paths and class names
MODEL_PATHS = {
    "model_1": "haywoodsloan/ai-image-detector-deploy",
    "model_2": "Heem2/AI-vs-Real-Image-Detection",
    "model_3": "Organika/sdxl-detector",
    "model_4": "cmckinle/sdxl-flux-detector",
    "model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
    "model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22",
    "model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
    "model_7": "date3k2/vit-real-fake-classification-v4"
}

CLASS_NAMES = {
    "model_1": ['artificial', 'real'],
    "model_2": ['AI Image', 'Real Image'],
    "model_3": ['AI', 'Real'],
    "model_4": ['AI', 'Real'],
    "model_5": ['Realism', 'Deepfake'],
    "model_5b": ['Real', 'Deepfake'],
    "model_6": ['ai_gen', 'human'],
    "model_7": ['Fake', 'Real'],

}

# Load models and processors
def load_models():
    image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
    model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"])
    model_1 = model_1.to(device)
    clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)

    clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)

    feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
    model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)

    feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
    model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)

    clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
    clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)

    image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
    model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
    clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)

    image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
    model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
    clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)

    return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7

clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7 = load_models()

@spaces.GPU(duration=10)
def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id, feature_extractor=None):
    try:
        if feature_extractor:
            inputs = feature_extractor(img_pil, return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = clf(**inputs)
            logits = outputs.logits
            probabilities = softmax(logits.cpu().numpy()[0])
            result = {class_names[i]: probabilities[i] for i in range(len(class_names))}
        else:
            prediction = clf(img_pil)
            result = {pred['label']: pred['score'] for pred in prediction}

        result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)]
        logger.info(result_output)
        for class_name in class_names:
            if class_name not in result:
                result[class_name] = 0.0
        if result[class_names[0]] >= confidence_threshold:
            label = f"AI, Confidence: {result[class_names[0]]:.4f}"
            result_output.append('AI')
        elif result[class_names[1]] >= confidence_threshold:
            label = f"Real, Confidence: {result[class_names[1]]:.4f}"
            result_output.append('REAL')
        else:
            label = "Uncertain Classification"
            result_output.append('UNCERTAIN')
    except Exception as e:
        label = f"Error: {str(e)}"
        result_output = [model_id, model_name, 0.0, 0.0, 'ERROR']  # Ensure result_output is assigned in case of error
    return label, result_output

@spaces.GPU(duration=10)
def predict_image(img, confidence_threshold):
    if not isinstance(img, Image.Image):
        raise ValueError(f"Expected a PIL Image, but got {type(img)}")
    if img.mode != 'RGB':
        img_pil = img.convert('RGB')
    else:
        img_pil = img
    img_pil = transforms.Resize((256, 256))(img_pil)
    img_pilvits = transforms.Resize((224, 224))(img_pil)

    label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
    label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2)
    label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3, feature_extractor_3)
    label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4, feature_extractor_4)
    label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
    label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
    label_6, result_6output = predict_with_model(img_pilvits, clf_6, CLASS_NAMES["model_6"], confidence_threshold, "Swin Midjourney/SDXL", 7)
    label_7, result_7output = predict_with_model(img_pilvits, clf_7, CLASS_NAMES["model_7"], confidence_threshold, "Vit", 7)

    combined_results = {
        "SwinV2/detect": label_1,
        "ViT/AI-vs-Real": label_2,
        "Swin/SDXL": label_3,
        "Swin/SDXL-FLUX": label_4,
        "prithivMLmods": label_5,
        "prithivMLmods-2-22": label_5b,
        "SwinMidSDXL": label_6,
        "Vit": label_7
    }
    print(combined_results)

    combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput, result_6output, result_7output]
    return img_pil, combined_outputs
# Define a function to generate the HTML content

def generate_results_html(results):
    def get_header_color(label):
        if label == 'AI':
            return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200'
        elif label == 'REAL':
            return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200'
        elif label == 'UNCERTAIN':
            return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200'
        elif label == 'MAINTENANCE':
            return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200'
        else:
            return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200'

    def generate_tile_html(index, result, model_name, contributor, model_path):
        label = result[-1]
        header_colors = get_header_color(label)
        real_conf = result[2]
        ai_conf = result[3]
        return f"""
        <div
            class="flex flex-col bg-gray-800 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25">
            <div
                class="-m-4 h-24 {header_colors[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{header_colors[4]}">
                <span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL {index + 1}:</span>
                <span
                    class="flex w-30 mx-auto tracking-wide items-center justify-center rounded-full {header_colors[2]} px-1 py-0.5 {header_colors[3]}"
                >
                    <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="w-4 h-4 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse">
                        {'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if label == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'}
                    </svg>
                    <p class="text-base whitespace-nowrap  leading-normal font-bold text-center self-center align-middle py-px">{label}</p>
                </span>
            </div>
            <div>
                <div class="mt-4 relative -mx-4 bg-gray-800">
                    <div class="w-full bg-gray-400 rounded-none h-8">
                        <div class="inline-flex whitespace-nowrap bg-green-400 h-full rounded-none" style="width: {real_conf * 100:.2f}%;">
                            <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                <span class="ml-1 font-medium font-mono">{real_conf:.4f}</span>
                            </p>
                        </div>
                    </div>
                </div>
                <div class="relative -mx-4 bg-gray-800">
                    <div class="w-full bg-gray-400 rounded-none h-8">
                        <div class="inline-flex whitespace-nowrap bg-red-400 h-full rounded-none" style="width: {ai_conf * 100:.2f}%;">
                            <p class="p-2 px-4 text-xs self-center align-middle">Conf:
                                <span class="ml-1 font-medium font-mono">{ai_conf:.4f}</span>
                            </p>
                        </div>
                    </div>
                </div>
            </div>
            <div class="flex flex-col items-start">
                <h4 class="mt-4 text-sm font-semibold tracking-wide">{model_name}</h4>
                <div class="text-xs font-mono">Real: {real_conf:.4f}, AI: {ai_conf:.4f}</div>
                <div class="card-footer">
                <a href="https://huggingface.co/{model_path}" target="_blank" class="mt-2 text-xs text-nowrap nowrap" style="font-size:0.66rem !important;">by @{contributor}</a>
                </div>
            </div>
        </div>
        """

    html_content = f"""
    <link href="https://unpkg.com/[email protected]/dist/tailwind.min.css" rel="stylesheet">
    <div class="container mx-auto">
        <div class="grid xl:grid-cols-4 md:grid-cols-4 grid-cols-1 gap-1">
            {generate_tile_html(0, results[0], "SwinV2 Based", "haywoodsloan", MODEL_PATHS["model_1"])}
            {generate_tile_html(1, results[1], "ViT Based", "Heem2", MODEL_PATHS["model_2"])}
            {generate_tile_html(2, results[2], "SDXL Dataset", "Organika", MODEL_PATHS["model_3"])}
            {generate_tile_html(3, results[3], "SDXL + FLUX", "cmckinle", MODEL_PATHS["model_4"])}
            {generate_tile_html(4, results[4], "Vit Based", "prithivMLmods", MODEL_PATHS["model_5"])}
            {generate_tile_html(5, results[5], "Vit Based, Newer Dataset", "prithivMLmods", MODEL_PATHS["model_5b"])}
            {generate_tile_html(6, results[6], "Swin, Midj + SDXL", "ideepankarsharma2003", MODEL_PATHS["model_6"])}
            {generate_tile_html(7, results[7], "ViT", "temp", MODEL_PATHS["model_7"])}
        </div>
    </div>
    """
    return html_content


def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
    if augment_methods:
        img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
    else:
        img_pil = img
    img_pil, results = predict_image(img_pil, confidence_threshold)
    img_np = np.array(img_pil)  # Convert PIL Image to NumPy array

    gradient_image = gradient_processing(img_np)  # Added gradient processing
    minmax_image = minmax_preprocess(img_np)  # Added MinMax processing

    # Generate ELA images with different presets
    ela_img_1 = ELA(img_pil, scale=100, alpha=0.66)
    ela_img_2 = ELA(img_pil, scale=50, alpha=0.5)
    
    forensics_images = [img_pil, ela_img_1, ela_img_2, gradient_image, minmax_image]
    
    html_content = generate_results_html(results)
    return img_pil, forensics_images, html_content

with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as iface:
    with ms.Application() as app:
        with antd.ConfigProvider():
            antdx.Welcome(
                icon=
                "https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png",
                title="Welcome to Project OpenSight",
                description=
                "The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models.  **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** "
            )
            with gr.Tab("👀 Detection Models Eval / Playground"):
                gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!")
                
                with gr.Row():
                    with gr.Column(scale=1):
                        image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
                        with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"):
                            augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
                            rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False)
                            noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False)
                            sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False)
                            confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold")
                        inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
                        predict_button = gr.Button("Predict")
                        augment_button = gr.Button("Augment & Predict")
                        image_output = gr.Image(label="Processed Image", visible=False)


                    with gr.Column(scale=2):
                        # Custom HTML component to display results in 5 columns
                        results_html = gr.HTML(label="Model Predictions")
                        forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[5], rows=[1], container=False, height="auto", object_fit="contain", elem_id="post-gallery")

                        outputs = [image_output, forensics_gallery, results_html]
                
                # Show/hide rotate slider based on selected augmentation method
                augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
                augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider])
                augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider])
                
                predict_button.click(
                    fn=predict_image_with_html, 
                    inputs=inputs, 
                    outputs=outputs
                )
                augment_button.click(  # Connect Augment button to the function
                    fn=predict_image_with_html, 
                    inputs=[
                        image_input, 
                        confidence_slider, 
                        gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False),  # Default values
                        rotate_slider, 
                        noise_slider, 
                        sharpen_slider
                    ], 
                    outputs=outputs
                )
                predict_button.click(
                    fn=None, 
                    js="() => {document.getElementById('project_accordion').open = false;}",  # Close the project accordion
                    inputs=[], 
                    outputs=[]
                )
            with gr.Tab("👑 Community Forensics Preview"):
                temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces")
                # preview # no idea if this will work
            with gr.Tab("🥇 Leaderboard"):
                gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™")
                

# Launch the interface
iface.launch()