File size: 7,267 Bytes
71c916b f1fd3e0 6863650 f1fd3e0 765ede8 fdd2048 765ede8 c1ca5a1 5bb0370 71c916b 765ede8 72ba547 f1fd3e0 765ede8 215277a c9eadbe f1fd3e0 765ede8 aff47dd f1fd3e0 6863650 fdd2048 02a57c6 fdd2048 aff47dd fdd2048 aff47dd f1fd3e0 c9eadbe fdd2048 6863650 c9eadbe 6863650 fdd2048 6863650 fdd2048 f1fd3e0 6863650 fdd2048 6863650 fdd2048 6863650 02a57c6 6863650 fdd2048 02a57c6 6863650 fdd2048 6863650 fdd2048 f1fd3e0 fdd2048 c9eadbe fdd2048 6863650 fdd2048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import shutil
import time
import gradio as gr
import qdrant_client
from getpass import getpass
# Set your OpenAI API key from environment variables.
openai_api_key = os.getenv('OPENAI_API_KEY')
# -------------------------------------------------------
# Configure LlamaIndex with OpenAI LLM and Embeddings
# -------------------------------------------------------
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
# -------------------------------------------------------
# Import document readers, index, vector store, memory, etc.
# -------------------------------------------------------
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.memory import ChatMemoryBuffer
# Global variables to hold the index and chat engine.
chat_engine = None
index = None
query_engine = None
memory = None
client = None
vector_store = None
storage_context = None
# Define a persistent collection name.
collection_name = "paper"
# Use a persistent folder to store uploaded files.
upload_dir = "uploaded_files"
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
# We do not clear the folder to keep previously uploaded files.
# -------------------------------------------------------
# Function to process uploaded files and update the index.
# -------------------------------------------------------
def process_upload(files):
"""
Accepts a list of uploaded file paths, saves them to a persistent folder,
loads new documents, and builds or updates the vector index and chat engine.
"""
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
# Copy files into the upload directory if not already present.
new_file_paths = []
for file_path in files:
file_name = os.path.basename(file_path)
dest = os.path.join(upload_dir, file_name)
if not os.path.exists(dest):
shutil.copy(file_path, dest)
new_file_paths.append(dest)
# If no new files are uploaded, notify the user.
if not new_file_paths:
return "No new documents to add."
# Load only the new documents.
new_documents = SimpleDirectoryReader(input_files=new_file_paths).load_data()
# Initialize a persistent Qdrant client.
client = qdrant_client.QdrantClient(
path="./qdrant_db",
prefer_grpc=True
)
# Ensure the collection exists.
from qdrant_client.http import models
existing_collections = {col.name for col in client.get_collections().collections}
if collection_name not in existing_collections:
client.create_collection(
collection_name=collection_name,
vectors_config={
"text-dense": models.VectorParams(
size=1536, # text-embedding-ada-002 produces 1536-dimensional vectors.
distance=models.Distance.COSINE
)
}
)
# Wait briefly for the collection creation to complete.
time.sleep(1)
# Initialize (or re-use) the vector store.
vector_store = QdrantVectorStore(
collection_name=collection_name,
client=client,
enable_hybrid=True,
batch_size=20,
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Build the index if it doesn't exist; otherwise, update it.
if index is None:
# Load all documents from the persistent folder.
index = VectorStoreIndex.from_documents(
SimpleDirectoryReader(upload_dir).load_data(),
storage_context=storage_context
)
else:
index.insert_documents(new_documents)
# Reinitialize query and chat engines to reflect updates.
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=(
"You are an AI assistant who answers the user questions, "
"use the schema fields to generate appropriate and valid json queries"
),
)
return "Documents uploaded and index updated successfully!"
# -------------------------------------------------------
# Chat function that uses the built chat engine.
# -------------------------------------------------------
def chat_with_ai(user_input, chat_history):
global chat_engine
if chat_engine is None:
return chat_history, "Please upload documents first."
response = chat_engine.chat(user_input)
references = response.source_nodes
ref = []
for node in references:
file_name = node.metadata.get('file_name')
if file_name and file_name not in ref:
ref.append(file_name)
complete_response = str(response) + "\n\n"
chat_history.append((user_input, complete_response))
return chat_history, ""
# -------------------------------------------------------
# Function to clear the chat history.
# -------------------------------------------------------
def clear_history():
return [], ""
# -------------------------------------------------------
# Build the Gradio interface.
# -------------------------------------------------------
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
# Use Tabs to separate the file upload and chat interfaces.
with gr.Tab("Upload Documents"):
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
file_upload = gr.File(
label="Upload Files",
file_count="multiple",
file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
type="filepath" # returns file paths
)
upload_status = gr.Textbox(label="Upload Status", interactive=False)
upload_button = gr.Button("Process Upload")
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
user_input = gr.Textbox(
placeholder="Ask a question...", label="Enter your question"
)
submit_button = gr.Button("Send")
btn_clear = gr.Button("Clear History")
# A State to hold the chat history.
chat_history = gr.State([])
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
btn_clear.click(clear_history, outputs=[chatbot, user_input])
return demo
# Launch the Gradio app.
gradio_interface().launch(debug=True)
|