File size: 6,224 Bytes
71c916b f1fd3e0 765ede8 fdd2048 765ede8 c1ca5a1 5bb0370 71c916b 765ede8 72ba547 f1fd3e0 765ede8 215277a c9eadbe f1fd3e0 765ede8 aff47dd f1fd3e0 aff47dd 95989dc aff47dd f1fd3e0 c9eadbe 95989dc c9eadbe 95989dc f1fd3e0 95989dc fdd2048 95989dc 6863650 95989dc 6863650 95989dc 6863650 95989dc fdd2048 95989dc fdd2048 95989dc fdd2048 95989dc fdd2048 95989dc fdd2048 f1fd3e0 fdd2048 95989dc fdd2048 c9eadbe fdd2048 95989dc fdd2048 6863650 fdd2048 95989dc fdd2048 b3aea75 fdd2048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import shutil
import gradio as gr
import qdrant_client
from getpass import getpass
# Set your OpenAI API key from environment variables.
openai_api_key = os.getenv('OPENAI_API_KEY')
# -------------------------------------------------------
# Configure LlamaIndex with OpenAI LLM and Embeddings
# -------------------------------------------------------
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
# -------------------------------------------------------
# Import document readers, index, vector store, memory, etc.
# -------------------------------------------------------
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.memory import ChatMemoryBuffer
# Global variables to hold the index and chat engine.
chat_engine = None
index = None
query_engine = None
memory = None
client = None
vector_store = None
storage_context = None
# -------------------------------------------------------
# Function to process uploaded files and build the index.
# -------------------------------------------------------
def process_upload(files):
"""
Accepts a list of uploaded file paths, saves them to a local folder,
loads them as documents, and builds the vector index and chat engine.
"""
upload_dir = "uploaded_files"
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
else:
# Clear any existing files in the folder.
for f in os.listdir(upload_dir):
os.remove(os.path.join(upload_dir, f))
# 'files' is a list of file paths (Gradio's File component with type="file")
for file_path in files:
file_name = os.path.basename(file_path)
dest = os.path.join(upload_dir, file_name)
shutil.copy(file_path, dest)
# Load documents from the saved folder.
documents = SimpleDirectoryReader(upload_dir).load_data()
# Build the index and chat engine using Qdrant as the vector store.
global client, vector_store, storage_context, index, query_engine, memory, chat_engine
client = qdrant_client.QdrantClient(location=":memory:")
vector_store = QdrantVectorStore(
collection_name="paper",
client=client,
enable_hybrid=True,
batch_size=20,
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=(
"You are an AI assistant who answers the user questions, "
"use the schema fields to generate appropriate and valid json queries"
),
)
return "Documents uploaded and index built successfully!"
# -------------------------------------------------------
# Chat function that uses the built chat engine.
# -------------------------------------------------------
def chat_with_ai(user_input, chat_history):
global chat_engine
# Check if the chat engine is initialized.
if chat_engine is None:
return chat_history, "Please upload documents first."
response = chat_engine.chat(user_input)
references = response.source_nodes
ref, pages = [], []
# Extract file names from the source nodes (if available)
for node in references:
file_name = node.metadata.get('file_name')
if file_name and file_name not in ref:
ref.append(file_name)
complete_response = str(response) + "\n\n"
if ref or pages:
chat_history.append((user_input, complete_response))
else:
chat_history.append((user_input, str(response)))
return chat_history, ""
# -------------------------------------------------------
# Function to clear the chat history.
# -------------------------------------------------------
def clear_history():
return [], ""
# -------------------------------------------------------
# Build the Gradio interface.
# -------------------------------------------------------
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
# Use Tabs to separate the file upload and chat interfaces.
with gr.Tab("Upload Documents"):
gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
# The file upload widget: we specify allowed file types.
file_upload = gr.File(
label="Upload Files",
file_count="multiple",
file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
type="filepath"
)
upload_status = gr.Textbox(label="Upload Status", interactive=False)
upload_button = gr.Button("Process Upload")
upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
user_input = gr.Textbox(
placeholder="Ask a question...", label="Enter your question"
)
submit_button = gr.Button("Send")
btn_clear = gr.Button("Clear History")
# A State to hold the chat history.
chat_history = gr.State([])
submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
btn_clear.click(clear_history, outputs=[chatbot, user_input])
return demo
# Launch the Gradio app.
gradio_interface().launch(debug=True)
|