File size: 6,224 Bytes
71c916b
f1fd3e0
 
 
765ede8
 
fdd2048
765ede8
c1ca5a1
5bb0370
 
 
71c916b
 
765ede8
72ba547
f1fd3e0
765ede8
215277a
c9eadbe
 
 
f1fd3e0
765ede8
 
 
aff47dd
f1fd3e0
 
 
 
 
 
 
 
aff47dd
95989dc
aff47dd
f1fd3e0
c9eadbe
95989dc
 
c9eadbe
95989dc
 
 
 
 
 
 
 
 
f1fd3e0
 
 
95989dc
fdd2048
95989dc
 
6863650
95989dc
 
 
6863650
 
95989dc
6863650
 
 
 
 
 
 
95989dc
fdd2048
 
95989dc
fdd2048
95989dc
fdd2048
 
 
 
 
 
 
 
 
95989dc
fdd2048
 
 
 
 
 
95989dc
fdd2048
 
f1fd3e0
fdd2048
 
95989dc
 
 
fdd2048
 
 
 
c9eadbe
fdd2048
95989dc
 
 
 
fdd2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6863650
fdd2048
 
95989dc
fdd2048
 
 
 
b3aea75
fdd2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import shutil
import gradio as gr
import qdrant_client
from getpass import getpass

# Set your OpenAI API key from environment variables.
openai_api_key = os.getenv('OPENAI_API_KEY')

# -------------------------------------------------------
# Configure LlamaIndex with OpenAI LLM and Embeddings
# -------------------------------------------------------
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings

Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.4)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")

# -------------------------------------------------------
# Import document readers, index, vector store, memory, etc.
# -------------------------------------------------------
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core.memory import ChatMemoryBuffer

# Global variables to hold the index and chat engine.
chat_engine = None
index = None
query_engine = None
memory = None
client = None
vector_store = None
storage_context = None

# -------------------------------------------------------
# Function to process uploaded files and build the index.
# -------------------------------------------------------
def process_upload(files):
    """
    Accepts a list of uploaded file paths, saves them to a local folder,
    loads them as documents, and builds the vector index and chat engine.
    """
    upload_dir = "uploaded_files"
    if not os.path.exists(upload_dir):
        os.makedirs(upload_dir)
    else:
        # Clear any existing files in the folder.
        for f in os.listdir(upload_dir):
            os.remove(os.path.join(upload_dir, f))
    
    # 'files' is a list of file paths (Gradio's File component with type="file")
    for file_path in files:
        file_name = os.path.basename(file_path)
        dest = os.path.join(upload_dir, file_name)
        shutil.copy(file_path, dest)
    
    # Load documents from the saved folder.
    documents = SimpleDirectoryReader(upload_dir).load_data()
    
    # Build the index and chat engine using Qdrant as the vector store.
    global client, vector_store, storage_context, index, query_engine, memory, chat_engine
    client = qdrant_client.QdrantClient(location=":memory:")
    
    vector_store = QdrantVectorStore(
        collection_name="paper",
        client=client,
        enable_hybrid=True,
        batch_size=20,
    )
    
    storage_context = StorageContext.from_defaults(vector_store=vector_store)
    
    index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
    
    query_engine = index.as_query_engine(vector_store_query_mode="hybrid")
    
    memory = ChatMemoryBuffer.from_defaults(token_limit=3000)
    
    chat_engine = index.as_chat_engine(
        chat_mode="context",
        memory=memory,
        system_prompt=(
            "You are an AI assistant who answers the user questions, "
            "use the schema fields to generate appropriate and valid json queries"
        ),
    )
    
    return "Documents uploaded and index built successfully!"

# -------------------------------------------------------
# Chat function that uses the built chat engine.
# -------------------------------------------------------
def chat_with_ai(user_input, chat_history):
    global chat_engine
    # Check if the chat engine is initialized.
    if chat_engine is None:
        return chat_history, "Please upload documents first."
    
    response = chat_engine.chat(user_input)
    references = response.source_nodes
    ref, pages = [], []
    
    # Extract file names from the source nodes (if available)
    for node in references:
        file_name = node.metadata.get('file_name')
        if file_name and file_name not in ref:
            ref.append(file_name)
    
    complete_response = str(response) + "\n\n"
    if ref or pages:
        chat_history.append((user_input, complete_response))
    else:
        chat_history.append((user_input, str(response)))
    return chat_history, ""

# -------------------------------------------------------
# Function to clear the chat history.
# -------------------------------------------------------
def clear_history():
    return [], ""

# -------------------------------------------------------
# Build the Gradio interface.
# -------------------------------------------------------
def gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Chat Interface for LlamaIndex with File Upload")
        
        # Use Tabs to separate the file upload and chat interfaces.
        with gr.Tab("Upload Documents"):
            gr.Markdown("Upload PDF, Excel, CSV, DOC/DOCX, or TXT files below:")
            # The file upload widget: we specify allowed file types.
            file_upload = gr.File(
                label="Upload Files",
                file_count="multiple",
                file_types=[".pdf", ".csv", ".txt", ".xlsx", ".xls", ".doc", ".docx"],
                type="filepath"  
            )
            upload_status = gr.Textbox(label="Upload Status", interactive=False)
            upload_button = gr.Button("Process Upload")
            
            upload_button.click(process_upload, inputs=file_upload, outputs=upload_status)
        
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(label="LlamaIndex Chatbot")
            user_input = gr.Textbox(
                placeholder="Ask a question...", label="Enter your question"
            )
            submit_button = gr.Button("Send")
            btn_clear = gr.Button("Clear History")
            
            # A State to hold the chat history.
            chat_history = gr.State([])
            
            submit_button.click(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
            user_input.submit(chat_with_ai, inputs=[user_input, chat_history], outputs=[chatbot, user_input])
            btn_clear.click(clear_history, outputs=[chatbot, user_input])
    
    return demo

# Launch the Gradio app.
gradio_interface().launch(debug=True)